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MODELLING OF ORTHOTROPIC MASONRY STRUCTURES  
 
A class of constitutive models of orthotropic non-homogeneous masonry materials  

in the framework of elasto-plasticity theory of small displacements with energetic 
hardening/softening is proposed. Analysed class of constitutive models reduces  
to the classical one for ideal elasto-plasticity with well-known Hoffman yield condition  
for orthotropic homogeneous materials. Proposed class of models is implemented in FEM 
system ABAQUS. Constitutive relationships are implemented in FORTRAN in user 
procedure UMAT. The numerical tests are proposed to check correctness  
of the implementation, and some boundary value problems are also solved. 

 
 

MODELOWANIE ORTOTROPOW YCH KONSTRUKCJI MUROWYCH  
 
W artykule przedstawiono sformułowanie teorii spręŜysto plastyczności 

niejednorodnych ortotropowych materiałów murowych z tzw. energetycznym 
wzmocnieniem/osłabieniem. Analizowana klasa modeli redukuje się do znanych modeli 
idealnej spręŜysto-plastyczności w warunkiem plastyczności Hoffmana. Zaproponowaną 
klasę modeli zaimplementowano w programie MES ABAQUS. Relacje konstytutywne 
zaprogramowano w języku FORTRAN w procedurze uŜytkownika UMAT. Przydatność 
zaimplementowanego modelu zaprezentowano na przykładzie zadania brzegowego ścinania 
ściany z otworem.  

 
 

1. INTRODUCTION 
 
This work confirms usefulness of the concept of structural tensors in masonry 

mechanics for a formulation of orthotropic failure criteria and constitutive relationships of 
elasto-plasticity theory. The theory of representation of orthotropic scalar-valued tensor 
functions and the convex analysis have been used, cf. [2]. From theoretical point of view, 
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the orthotropic failure criterion is a surface, bounding a convex set in the space of the stress 
tensor. It is a scalar-valued function dependent on seven invariants of structural tensors and 
the stress tensor and has to satisfy the convexity requirement for all stress conditions.  

In order to capture properly the entire range of the stress states corresponding to the two 
distinct zones (being tension and compression parts), the proposed 3D orthotropic plastic 
criterion for a masonry material is represented by two quadratic functions of the invariants. 
On the whole, it includes 15 independent material constants. These material parameters are 
dependent of peak stress values obtained from appropriate uniaxial and biaxial tests. This 
criterion can be treated as a generalization of the well known Hoffman failure criterion 
which was originally formulated as a quadratic function of stress components utilizing nine 
independent material parameters, cf. [4]. In the simplest situation, when only one failure 
criterion is used, 12 parameters is required. Then, the Hoffman criterion of 9 independent 
parameters may be regarded as its special case. The proposed model was implemented in 
frame of user subroutine UMAT in ABAQUS software. For such implementation tests for 
homogenous stress and strain fields were carried out showing correctness of the subroutine. 
 
2. INVARIANT FORMULATION OF A NEW CLASS OF YIELD AN D FAILURE 
CONDITIONS 

 
In the invariant formulation the two yield functions can be written in the following 

form: 
 

 ( ) ( )1 1 11 0pf K Lκ− + =  and ( ) ( )2 2 21 0pf K L κ− + = ,                             (1) 

 
where Lα  are given constant plastic parameters, ακ  are internal hardening variables, and  
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Material parameters: ( )
ia α , ( )

ijb α  and ( ) ( )1 2 0i ic c= >  must be determined from uniaxial and 

biaxial strength experimental data. The invariants ( )1, ,6pK p = K  are given by: 
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where j j j= ⊗M m m  (no summation over j, and i j ijδ⋅ =m m ) and vectors im  are vectors 

of principal axes of orthotropy. Function fα  is convex with respect to σσσσ  if and only if the 

3 3×  matrix ( )
ijb α    is semi-positive definite. We construct the failure limit in such a way 

that the following set: 
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pB B B B T f Kα α= ∩ ∧ ≡ ∈ − <σσσσ ,                             (4) 

 

is convex. We also assume that at least the function 
1

f  is convex with respect to σσσσ . 

 
3. CONSTITUTIVE RELATIONSHIPS 

 
The elastic-plastic orthotropic material is considered with the assumption of an additive 

decomposition of the strain tensor  
 

e p= +ε ε ε  ,                                                              (5) 
 
into the elastic part eε  and the plastic part pε . The elastic part is defined by the orthotropic 
Hooke's law: 
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where C  is interpreted as the stiffness tensor (positively defined, double symmetric, fourth 
order tensor). Stored elastic energy function SW  is the following function of orthotropic 

invariants of elastic strain tensor e
ε : 
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where ia , ib  and ic  are elasticity parameters (which are independent from coordinate 

system, contrary to the stiffness tensor components). An interpretation of material 

parameters from (7) is given in [6], together with relationships expressing ia , ib  and ic  via 

technical elasticity parameters (e.g. Young moduli and Poisson ratios). It is worth 
emphasizing that C  is an orthotropic tensor function of second order parametric tensors 

iM% . In general we assume that parametric tensors in (3) are different than these occurring 

in (7). 
Due to the convenience of implementing the model in ABAQUS, yield condition is 

rewritten in the following form: 
 

( ) ( )1
, . . . 1 0

2
f Lα α α α α ακ κ= + − + =σ σ P σ p σ ,                                  (8) 
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where αP  and αp  are respectively tensor functions of the fourth and second order, 

depending on the parametric tensors iM  and material parameters defining plastic 
properties.  

In standard theory of elastic-plastic materials formulated in the stress space, only such 
states of stress are allowed, for which 0fα ≤ . If 0fα < , than state of stress is called elastic. 
Plastic part of the strain tensor is defined as associated with the yield functions (8) (or in 
the form (1)): 
 

( ) ( ),
.

T

P
fα

α α α α α α α

α
γ γ γ

=

∂
= = + ≡

∂
σ σ

σ
ε P σ p g

σ

& & &&  ,                                  (9) 

 
where 0αγ >&  is so called plastic multiplayer. From (5) i (6), after differentiation with 
respect to time and substituting (8) we obtain: 
 

( ). .epα αγ= − ≡σ C ε g C ε&& & & ,                                                     (10) 

 
where epC  operator (double symmetrical fourth order tensor) we evaluate after obtaining 

result for αγ& . From the condition of conformity 
 

( ), 0fα α αγ κ =σ&& ,    0αγ >&  ,                                               (11) 

 
with assumption that 
  

2
.α α α α α ακ = γ ≡ γg g g& & & ,                                                     (12) 

 
we obtain plastic multiplayer as 
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Denominator in (13) is always positive, which meet the requirement 0γ >&  only if the 

numerator (13) is positive. After substituting (13) to (10) we obtain: 
 

( ) ( )
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. .

. .
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g C C g
C C

g C g g
.                                               (14) 

 
The formal generalization of the proposed model is the adoption in (7) so called piecewise 
linear function. Then for every n-th interval of plastic variable ακ&  we assume different Lα . 



MODELLING OF ORTHOTROPIC MASONRY STRUCTURES  
 

1473

For practical considerations we assume that the stress space is limited by two surfaces 
of the type (1). In such case always it is needed to solve the problem of evaluating gradient 
at the hyper-lines connecting these surfaces (and so-called corner points). In such case we 
assume the following linear combination of the two gradients: 
 

( ) ( ) ( ) ( ) ( )1 21 , 0,1λ λ λ= + − ∈g σ g σ g σ ,                                 (15)  

 
where the scalar parameter λ  selection depends on the adopted algorithm. If we assume a 
priori  1/ 2λ = , we get so called Koiter rule. 
 
4. NUMERICAL IMPLEMENTATION 

 
Constitutive relationship (10) is in the form of a "highly non-linear" differential 

equation which can be solved using modified Euler method (so called “forward” or 
“backward”). Therefore, (10) is replaced by the incremental equation of the form: 

 

( ). .epαγ∆ = ∆ − ∆ ≡ ∆σ C ε r C ε%%  ,                                         (16) 

 
where 

epC%  is a consistent with an algorithm integrating the constitutive relations. We 

assume that for all [ ]0,nt T∈  we know 1n n+∆ = −ε ε ε  (controlled deformation) and we 

want to calculate the stress state 
1n+σ  for 1nt + . It is assumed than  that 

 

1 1 .trl trl

n n α αγ+ += − ∆σ σ C g ,                                                   (17) 

 
where 1 1.trl

n n+ +=σ C ε  is so called trial elastic stress state and trl

αg  is a gradient for 

( )1,
trl

nfα ακ+σ .  

It should be emphasized that the calculation of the multiplier and the tensor function 
trl

αg , is significantly dependent on the numerical implementation. General method of 

implementation of such a model is presented in [7] on the example of the theory of elasto-
plasticity with the Huber-Mises (isotropy) and Hill (orthotropy) yield conditions, while a 
detailed description of the numerical FEM implementation is given in the monograph [4]. 
In the case of the constitutive relations considered in this work we can proceed similarly as 
in the above articles in order to obtain the operator 

epC% . The most important step is to 

calculate the plastic multipliers αγ∆  from quadratic equation of the variable αγ∆ , 
therefore, significantly different than for Hill's yield condition. 

Implementation of the proposed model of the material in the program ABAQUS is the 
programming task in the FORTRAN language. In the subroutine UMAT it is needed to 
evaluate the stress and stiffness tensor at the end of the time step, what always is connected 
with constitutive relationship integration. This procedure requires the definition of stress 
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and strain in the vector form according to the so-called Voigt notation, which is not 
convenient because of the need to write the representation of tensors in the bases and co-
bases. It should be pointed out that in program ABAQUS, the standard algorithms are 
available, e.g.: the Newton-Raphson and RIKS for solving a nonlinear equations of 
construction equilibrium. 

 
5. NUMERICAL TEST ON STRUCTURAL LEVEL FOR TWO HOFFM AN 

CRITERIA – SHEARING OF THE MASONRY WALL 
 
Shearing of the masonry wall is modelled as the three-dimensional test. The main goal 

of this test is to predict the failure mode. The example presented here is a masonry wall 
1.05[m] long and 0.8[m] high with a rectangular opening (EF=HG=0.2[m], 
EH=FG=0.3[m]) placed 0.4[m] from axis 2 and 0.25[m] from axis 1, cf. fig.1. The 
thickness of the wall is assumed equal to 0.12[m]. Shearing of the wall is realized by 
displacement boundary conditions: for edge DCD’C’ the displacements in direction 1 and 2 

of all nodes are assumed equal to zero, while for edge ABA’B’ the displacement 1u =-

0.1[mm]. For the remaining edge surfaces the zero stress boundary conditions are assumed. 
 

 
 

Fig. 1. Schematic view of the masonry wall exposed to the shearing. FEM mesh, boundary 
conditions and geometry 
 

The material constitutive model adopted in this case is the one described in section 3 
(simplified model with Hoffman criterion). The material parameters used for simulation are 
presented in tab.1. It was assumed also that Lα =0, so we are dealing with elastic-perfectly 

plastic material. 
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Tab. 1. Material properties 
Elastic properties Inelastic properties 

1
f  Inelastic properties 

2
f  

E1 
8 GPa 

E2 
7.2GPa 

E3 
6.4GPa 

[MPa] [MPa] [MPa] [MPa] [MPa] [MPa] 

G12 
3 GPa 

G13 
2.5GPa 

G23 
2 GPa 

Yc1 
1.05 

Yc2 
1.05 

Yc3 
16.4 

Yc1 
1.0 

Yc2 
1.0 

Yc3 
1.6 

12
ν  

0.15 
13

ν  

0.25 
23

ν  

0.2 

Y t1 
0.25 

Y t2 
0.25 

Y t3 
0.25 

Y t1 
1.0 

Y t2 
1.0 

Y t3 
1.0 

21
ν = 

12 2 1
/E Eν  

31
ν = 

13 3 1
/E Eν  

32
ν = 

23 3 2
/E Eν  

k12 
0.4 

k13 
0.4 

k23 
0.4 

k12 
0.4 

k13 
0.4 

k23 
0.4 

 
 

a) b) 

 
 

 
Fig. 2. Contour plots of the plastic strain components: a) 11

pε , b) 22
pε . 

 
Displaying the plastic strain gives a good indication of the “cracked” areas in the model. 

Figure 2 gives a contour plot of the plastic strain components with strain localization near 
corners F and H of the opening. Such behaviour is observed in experiments and in other 
numerical simulations, cf.[6]. 

 
6. FINAL REMARKS  
 

The continuum structural model for the analysis of masonry structures is proposed in 
the paper. Constitutive relations are established in the framework of the mathematical 
elastoplasticity theory of small displacements.  Based on the new orthotropic failure 
criterion that was earlier proposed by the authors, the model includes a generalization of the 
well known Hoffman failure criterion. That criterion is chosen in order to present the 
implementation of the model into the finite element program ABAQUS. The test of the 
proposed incremental-iterative algorithm of the finite element method for an anisotropic 
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continuum is presented in the paper on the example of the masonry wall shearing. At 
present, the model may be useful in the prediction of the load capacity of masonry 
structures since the implementation of the softening into finite element program is currently 
in progress. 
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