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DECOMPOSITION OF DESCRIPTOR FRACTIONAL LINEAR SYSTE MS  
INTO DYNAMIC AND STATIC PARTS 

 
A method for decomposition of descriptor fractional linear systems with regular pencils 

into dynamic and static parts is proposed. The method is based on modified version of the 
shuffle algorithm. A procedure of the decomposition is given and illustrated on numerical 
examples. 

 
 

DEKOMPOZYCJA SINGULARNYCH  LINOWYCH UKŁADÓW 
NIECAŁKOWITEGO RZ ĘDU NA CZĘŚĆ DYNAMICZN Ą I STATYCZN Ą 

 
 Zaproponowano metoda dekompozycji singularnych liniowych układów niecałkowitego 

rzędu o pęku regularnym na część dynamiczną oraz statyczną. Metoda oparta została  
na zmodyfikowanej wersji algorytmu przesuwania. Zaprezentowano procedurę 
dekompozycji która została zilustrowana przykładami numerycznymi. 

 
 

1. INTRODUCTION 
Descriptor (singular) linear systems have been addressed in many papers and books [1-

4, 7, 8, 12]. The eigenvalues and invariants assignment by state and output feedbacks have 
been investigated in [1-3, 6, 12] and the realization problem for singular positive 
continuous-time systems with delays in [10]. The computation of Kronecker’s canonical 
form of a singular pencil has been analyzed in [15].The fractional differential equations 
have been considered in the monograph [14]. Fractional positive  linear systems have been 
addressed in [5, 9] and  in the monograph [11]. Luenberger in [13] has proposed the shuffle 
algorithm to analysis of the singular linear systems.  

In this paper a method for decomposition of the descriptor fractional linear systems with 
regular pencils into dynamic and static parts will be proposed. The method is based on the 
modified version of the shuffle algorithm. 

The paper is organized as follows. In section 2 the decomposition method is presented 
for descriptor fractional discrete-time linear system. In section 3 the method is extended to 
the descriptor fractional continuous-time linear systems. Concluding remarks are given in 
section 4. 

To the best of the author’s knowledge the decomposition of descriptor fractional linear 
systems into dynamic and static parts has not been considered yet. 
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The following notation will be used in the paper. 

The set of mn×  real matrices will denoted by mn×ℜ  and .: 1×ℜ=ℜ nn  The set of 
nonnegative integers will be denoted by +Z  and the nn×  identity matrix by .nI  

 
2. DESCRIPTOR FRACTIONAL DISCRETE-TIME LINEAR SYSTE MS 

Consider the descriptor fractional discrete-time linear system 
 

iii BuAxxE +=∆ +1
α , ,...}1,0{=∈ +Zi                                    (2.1)                                           

 

where, m
i

n
i ux ℜ∈ℜ∈ ,  are the state and input vectors, ,,, mnnnnn BEA ××× ℜ∈ℜ∈ℜ∈   

and the fractional difference of the order α is defined by 
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It is assumed that 

                                          0det =E                                                         (2.4a) 
and the pencil is regular, i.e. 

0]det[ ≠− AEz                                                   (2.4b) 

 
for some Cz∈  (the field of complex numbers). 
Substituting (2.2) into (2.1) we obtain 
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The following elementary row operations will be used: 

1) Multiplication of the ith row (column) by a real number c. This operation will be 
denoted by ][ ciL ×  ( ][ ciR × ). 

2) Addition to the ith row (column) of the jth row (column) multiplied by a real 
number c. This operation will be denoted by ][ cjiL ×+  ( ][ cjiR ×+ ). 

3) Interchange of the ith and jth rows (columns). This operation will be denoted by 
],[ jiL  ( ],[ jiR ). 

Applying the row elementary operations to (2.5) we obtain 
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where nnE ×ℜ∈ 1
1  is full row rank and nnA ×ℜ∈ 1

1 , nnnA ×−ℜ∈ )(
2

1 , mnB ×ℜ∈ 1
1 , 

mnnB ×−ℜ∈ )(
2

1 . The equation (2.7) can be rewritten as 
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and 

ii uBxA 220 +=                                                 (2.8b) 

 
Substituting in (2.8b) i by i + 1 we obtain 
 

1212 ++ −= ii uBxA                                                  (2.9) 

 
The equations (2.8a) and (2.9) can be written in the form  
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If the matrix  
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is singular then applying the row operations to (2.10) we obtain 
 

1
21

21

20

20
0

,2

,2
1

21

21

20

20
1

2 ...
0 +−+ 








+








+








++








+








=








ii

i

i
iii u

B

B
u

B

B
x

A

A
x

A

A
x

A

A
x

E
           (2.12) 

 

where nnE ×ℜ∈ 2
2  is full row rank with 12 nn ≥  and nn

jA ×ℜ∈ 2
,2 , nnn

jA ×−ℜ∈ )(
,2

2 , 

ij ,...,1,0=  mn
kB ×ℜ∈ 2

,2 , mnn
kB ×−ℜ∈ )(

,2
2 , 1,0=k .  

Note that the array  
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−
− +                        (2.13) 

 
corresponding to (2.10) can be obtained from 
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22

111121111

0...00

...

BA

BEcEcEcAE i+−
                       (2.14) 

by the shuffle of A2. 
From (2.12) we have 
 

121200,212120 ...0 +− +++++= iiiii uBuBxAxAxA                        (2.15) 

 
Substituting in (2.15) i by i + 1 (in state vector x and in input u) we obtain 
 

2211201,221120 ... +++ −−−−−= iiiii uBuBxAxAxA                        (2.16) 

 
From (2.12) and (2.16) we have 
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If the matrix  
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is singular then we repeat the procedure. Continuing this procedure after finite number of 
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where
nn

p
pE

×ℜ∈  is full row rank, 
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pj
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nnn
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×−ℜ∈ )(
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Using the elementary column operations we may reduce the matrix (2.20) to the form 
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Performing the same elementary operations on the matrix nI  we can find the matrix 
nnQ ×ℜ∈  such that 
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Taking into account (2.22) and defining the new state vector 
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from (2.19) we obtain 
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and 
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where 

ijAAAAAQA pjpjpjpjpjpj ,...,1,0],[],[ )2()1()2()1( ===                       (2.26) 

 
Substitution of (2.25) into (2.24) yields 
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The standard system described by the equation (2.27) is called the dynamic part of the 
system (2.5) and the system described by the equation (2.25) is called the static part of the 
system (2.5). 
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The procedure can be justified as follows. The elementary row operations do not change the 
rank of the matrix ][ AEz− . The substitution in the equations (2.8b) and (2.15) i by i + 1 

also does not change the rank of the matrix ][ AEz−  since it is equivalent to multiplication 

of its lower rows by z and by assumption (2.4b) holds. Therefore, the following theorem 
has been proved. 
Theorem 1. The descriptor fractional discrete-time linear system (2.5) satisfying the 
assumption (2.4) can be decomposed into the dynamic part (2.27) and static part (2.25). 
Example 1. Consider the descriptor fractional linear system (2.1) for 5.0=α  with 
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In this case the conditions (2.4) are satisfied since 
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Applying to the matrices (2.29) the following elementary row operations )]2(21[ −×+L , 
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and the equations (2.8) have the form 
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Using (2.6) we obtain 5.0
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is nonsingular and to reduce this matrix to the form (3.21) we perform the elementary 
column operations )]2(31[ −×+R , )]1(2[ −×R , ]3,2[R . The matrix Q has the form  
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The new state vector (2.23) is  
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In this case the equations (2.24) and (2.25) have the forms 
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The dynamic part of the system is described by (2.38) and the static part by (2.37). 
 
3. DESCRIPTOR FRACTIONAL CONTINUOUS-TIME LINEAR SYS TEMS 

The following Caputo definition of the fractional derivative will be used [11] 
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where +ℜ∈α  is the order of fractional derivative and 
n

n
n

d

fd
f

τ
ττ )(

)()( =  and 

∫
∞

−−=Γ
0

1)( dttex xt  is a gamma function. 

Consider the descriptor fractional continuous-time linear system described by the state 
equation 
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where ,)( ntx ℜ∈  mtu ℜ∈)(  are the state and input vectors and ,nnA ×ℜ∈  mnB ×ℜ∈ . 

It is assumed that 0det =E  and  
 

0]det[ ≠− AEs  for some C∈s .                                 (3.3) 

 
Performing elementary row operations on the array 
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)()( 22 tu
dt

d
Btx

dt

d
A α

α

α

α

−=                                               (3.6) 
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(or equivalently the equation (3.7)) can be obtained from (3.4) by the shuffle of A2. 

If matrix 
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 is singular then we repeat the step of the procedure for (3.7) and after finite 

numbers of steps (in a similar way as for discrete-time systems) we obtain 
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Defining the new state vector 
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Substitution of (3.14b) into (3.14a) yields 
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The standard system described by the equation (3.15a) is called the dynamic part of the 
system (3.2) and the system described by the equation (3.14b) is called the static part of the 
system (3.2). The procedure can be justified in a similar way as for the discrete-time 
systems. 
Therefore, the following theorem has been proved. 
Theorem 2. The descriptor fractional continuous-time linear system (3.2) satisfying the 
assumption (3.3) can be decomposed into the dynamic part (3.15a) and the static part 
(3.14b). 
Example 2. Consider the descriptor fractional linear system (3.2) with matrices 
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The matrices (3.16) satisfy the condition (3.3) since 
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Differentiation with respect to time of (3.18b) yields 
 

)()( 22 tu
dt

d
Btx

dt

d
A α

α

α

α

−=                                     (3.19) 

 
The equations (3.18a) and (3.19) can be written in the form 
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The matrix 

















=








100

010

101

2

1

A

E
                                                (3.21) 

 
is nonsingular. Performing the elementary column operation )]1(13[ −×+R  on (3.21) we 

obtain the identity matrix I3 and  

















=
100

010

101

Q                                                   (3.22) 

such that 
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Defining the new state vector 
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from (3.20) we obtain 
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)(2)()( 32 tutxtx −==                                             (3.25b) 

 
The dynamic part of the system is described by the equation (3.25a) and the static part by 
the equation (3.25b). 
 
4. CONCLUDING REMARKS 
 

A method for decomposition of descriptor fractional discrete-time and continuous-time 
linear systems with regular pencils into dynamic and static parts has been proposed. The 
method is based on modified version of the shuffle algorithm. It has been shown that 
descriptor linear system can be decomposed if their pencils are regular (Theorem 1 and 2) 
The procedure of the decomposition has been demonstrated on numerical examples. Open 
problems are extension of these considerations to positive descriptor fractional linear 
systems and to descriptor fractional linear systems with singular pencils. 
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