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OPTIMAL CONTROL FOR A PLANTS CONSISTING OF TWO MASS ES  
AND CONNECTED WITH A NON-LINEAR SPRING 

 
Problem of optimal system controlling a motion of the plant consisting  of two-
masses connected with a non-linear spring is considered in the paper. For example 
such plants can be motorcars with trailer or dumb barge pulling by ship.  
The irregular motion of elements of such plants influences negative on consume 
energy. In addition, because of safety, the speed of motion should be limited.  
As a criterion of quality we take the energy of the error signals. Till now the two 
mass problem (benchmark problem) was considered for linear cases only.  
The novelty of our work is generalisation of this problem (using the describing 
function method) for non-linear cases. The H∞ control theory (robust control)  
is firstly adapted to cope with non-linear plants. High effectiveness of the optimal 
controller has been confirmed by computer simulation in MATLAB.  

 
 

OPTYMALNE STEROWANIE OBIEKTAMI SKŁADAJ ĄCYMI SI Ę Z DWU MAS 
I POŁĄCZONYMI NIELINIOW Ą SPRĘśYNĄ 

 
W pracy rozwaŜany jest układ sterujący, optymalizujący ruch obiektu składającego 
się z dwóch elementów o znacznych masach połączonych nieliniową spręŜyną. 
Obiektami takimi są np. samochody z przyczepami lub barki wodne ciągnięte przez 
statki. Nieregularności ruchu elementów takich obiektów powodują duŜe straty 
energii w napędzie i, ze względu na bezpieczeństwo, zmuszają do ograniczania 
prędkości ruchu, co wydłuŜa czas trwania transportu. Kryterium jakości jest zuŜycie 
energii określone sygnałem błędu. Dla znalezienia optymalnego regulatora 
przeprowadzono harmoniczną linearyzację układu i dla zlinearyzowanego równania 
zastosowano metody optymalizacji bazujące na metodach przestrzeni Banacha H∞   
i  H2  (robust control). Wysoka skuteczność regulatora wyznaczonego opisaną 
metodą potwierdzona została symulacją komputerową. Dodatkowym efektem 
zastosowanego sterowania jest zapewnienie stabilności układu. 
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1. INTRODUCTION 
The problem of H∞ optimal control for the plant consisting from  two-masses m1, m2 and 

connected with a non-linear spring is considered in the paper. Till now the two mass 
problem (benchmark problem) was considered for linear cases only. The novelty of our 
work is a generalization of this problem (using the describing function method) for non-
linear cases. The H∞ control theory is firstly adapted to cope with non-linear plants. Up to 
this time the theorem is given assuming that the considered non-linear system is optimal in 
the sense of H∞ norm criterion if corresponding harmonically linearized system is optimal 
in the same sense. This fact enables one, by utilization of describing function method, to 
bring the non-linear two-mass dynamical model to the linear approximation form and 
thereby to apply H∞-type procedures.  

Let us consider a non-linear dynamical model as in Fig. 1 given by the following set of 
equations:  
 
 m1 x1''(t) + f(x1(t) – x2(t)) = u(t) (1) 

 m2 x2''(t) – f(x1(t) – x2(t)) = w(t), (2) 

 
where  x

1
(t) and x

2
(t) are the positions of masses  m

1
 and m

2
;  the spring joining two masses 

is described by a non-linear operation f  (for example f(x) = |x|x3) 
   

 

m1 m2 

x1

x  
x2 

f(x2 -x1 ) 
u w 

 
 

Figure 1. The exemplary plant in  the non-linear benchmark problem 
 
The signal u(t) is a control force applied to mass m1 and the plant is disturbed by w(t). 
We put   w(t) = 0 and introduce the notations :  
 

v1 = x2,   v2= x1- x2,    v = [v1, v2]
T, 

 
The equations (1) ÷ (2) take the form: 
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In the paper the problem of two-masses (non-linear benchmark problem) tracking  is 
tackled via H∞-optimal control theory methods. Since the two-mass dynamical model is 
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non-linear the theory is firstly adapted (using the describing function method) to cope with 
non-linear plants. The method of analysis of the nonlinear state feedback H∞ optimal 
control was considered by A.J. van der Schaft [9]. The form of non-linear function f, in the 
considered plant, enable however to use the describing function method in simply way.  
 
2. ADAPTATION OF H∞ CONTROL THEORY TO THE CONSIDERED 

NON-LINEAR PROBLEM 
Let us consider a tracking control system 
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where  P  is a non-linear dynamical operation, representing the plant (equations (3), (4)), 
which maps a set of signals with bounded energy for  t ∈ [0,∞)  into itself (Banach space  

L
2
 → L

2
) and fulfills condition: v( .  ) = 0  for  u( .  ) = 0. The main problem is that the signal 

v is to track a reference signal r.  The plant input u is generated by passing r and v through 
linear controllers C

1
 and  C

2
 respectively (as in Fig. 2). 

 

   C 1  W
w r h u

P
 v

+
_

C 2  
 
Fig. 2. Tracking system 
 
It is postulated that r is not a known fixed signal but may be modeled as belonging to the 
class 
 

R(W,m) = {r : r = W(w) for some w∈L
2
, ||w||

2
 ≤ m < ∞} .                      (6) 

 

If the constant m is not determined exactly then the notation R(W) will be used.  
The Laplace's transformations of signals u, v, h, r will be denoted by u(s), v(s), h(s), r(s) 

respectively. For the complex-value functions x(s) we use another, Hardy space H2, besides 
L2. Let H∞ is a set of  linear operations F for which there exist bounded in re(s) ≥ 0 transfer 
functions F(s). This set create a Banach space (H∞ Hardy space). The subset of H∞ 
consisting of rational functions with real coefficients will be denoted by RH∞. We can 
formulate the following statement: if  F ∈H∞ and x ∈H2, then F(x) ∈H2, moreover 

 
 

||F||∞ = sup{ ||F(x)||2 : x∈H2
 , ||x||2 ≤ 1 }. 



1824 Adam ŁOZOWICKI, Teresa ŁOZOWICKA-STUPNICKA, Dorota ŁOZOWICKA 

 
Since the tracking error signal is equal to (r – v)  the cost function  is  
 
 ||z||2 = (|| r-v ||2

2 + || ρu ||2
2 )½, (7) 

 
where ρ is a non-negative weighting factor. Thus the tracking criterion takes here the form 
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The minimization of the cost function (7) is equivalent to minimization of energy 
consumption in non-linear tracking control system (5).   

For simplicity of our  consideration let us assume at  first that C1 = C2 . This does not 
change the generality of the method because we can choose W  ( and the class of  signals 
R(W) )  that  W(C1) = W1(C2). For example we can put W = W1(C2(C1

-1)). We can transform 
formally the equations (5) to the form 
 
 ||r-v||2 = ||C2

-1((C2
-1 + P)(r)||2 (9) 

 ||u||2 = ||( C2
-1 + P)(r)||2 , (10) 

 
In connection with the operation P (mapping the space L2 into itself) the describing 

function can be  précised as follows [5]:   
Let v(t) be a response of a system described by the operation P to the signal  

x(t) = N sin(ωt), a quotient of the symbolic value of the first harmonic of the output signal 
v(t) to the amplitude of the input is called the describing function and is denoted by 
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    Let us consider now a system which consists of two non-linear elements given by 
describing functions  P1(jω,N)  and P2(jω,N) and linear element with transfer function K(s) 
. 

 x 
P1(jω,N)  
P(jω,Ν)ω,Ν)ω,Ν)ω,Ν) 

K(jω)ω)ω)ω) P2(jω,N)  

 
 
Fig. 3. Example of non-linear system 

 
 

The resulting describing function P(jω,N) can be expressed by formula: 
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P(jω,X) = P2(jω,X|P1(jω,X)||K(jω)|) P1(jω,X) K(jω) . 

 
Let P(s) be a describing function of some non-linear operation P. The approximate 

equations, which correspond to the equations (5), have the form 
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System (12) can be  treated as a system of linear differential equations.  

The equivalent standard problem in H∞ control theory  (see   [ 2 ], [ 3 ]), is defined by 
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Since the methods of optimization in  H∞  space (13) refer to linear systems only  the 
theorem  which enables us to use these methods to optimization of a non-linear tracking 
systems is presented below. Let us assume that  the linear operation C2 is given by 
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where c(τ) is a bounded variation function or an operation given by the transfer function 
C2(s). The equations (5) can be written in the form 
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Theorem 1 (compare to [8]). Let an operation P mapping the Banach space L2  into 

itself has a uniformly continuous and bounded derivative. If for a controller C2
* ∈ RΗω  the 

expression 
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attains a finite minimum and if for the ω from this expression the number 

( )ϖjnC
n

3
1

sup
≠

is sufficiently small then the control system described by equations (5) 

with the controller C2
* is optimal in the  sense of criterion (8). Moreover, under  the same 

assumptions the controller C2
*   is optimal also for the approximate system (12) . 

Conclusion. Let the assumptions of theorem 1 are fulfilled. If the controller  
K* = [C1

*,C2
*] is optimal in the sense of criterion (8) for the approximate system (12) then  

it is also optimal in the sense this criterion for  the non-linear system (5).  
Let the describing function  P of some non-linear plant P be a rational function with real 

coefficients and  analytic in  the open  right half-plane    re s > 0   ( P ∈ RH∞ ). The system 
(12) can be transformed to the  form of model matching (see Fig. 4) , where Ti (s) ∈ RH∞ . 
 

 

  r 

T1 

  T2  T3   Q 

  z 

 u 
  _- 

+ 

 
    

 Fig. 4. Model-matching 
 
In the case of stable describing  function we can receive  (compare (13)) that 
 
 K = -Q(I –G22 Q)-1 = -(I - G22 Q)-1 Q ,       T1 = G11 , T2 = G12 ,   T3 = G21   (17)  

 
In view of this fact the criterion equivalent  to (8) is 
 
 ′′ = −

∈ ∞
∞I T T QT

Q RH
2 1 2 3min  .  (18)  

 
For the two-mass control, the following problem can be solved too: compute an upper 

bound γ  for  Ι 2''  such that  γ − Ι 2"  is less than a pre-specified tolerance; and then compute 
a  Q ∈ RH∞  satisfying 
 
 ||T1 – T2 QT3||∞ ≤ γ . (19) 
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Of course, such Q may not be optimal, but it can be calculated with  any pre-assumed 
accuracy. Note that the considered  methods can be generalized  to include disturbances 
rejection problems [ 2 ], [ 3 ]. 
 
3. TWO-MASS MATHEMATICAL MODEL  

Now we take under consideration the two-mass dynamical model given by the 
equations (3), (4).   
 

m

 -m

f(x) = f(m) + f'(m)(x - m)

x

f(x)

    f(x) = -f(m) + f'(m)(x + m)

 
 

Fig. 5. Graph of function f(x) 
 
We assume that the non-linear function (describing the action of spring between two mass) 
has the form 

 f(x)= 
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Let us now find  the describing function of the element given by equations (4) and (20). For 
this purpose we assume that output signal has the form 
 

v2 (t) = v2 sin ωt 

so we get 
 

( +
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Note that the following equation can be used 
 

u(jω) = v2 (jω)P -1 (jω,v2). 
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Based on the above given definition of the describing function  (11) we obtain  
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Then the first harmonic of input signal has the form 
 

u(t) =  u sin ωt = ( ) )sin(),j( 2
1
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Now we can write 
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Where A m= 30 2π ; 
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 C m m= 60 1 2π  

The function v2(u,ω) in above formulas can be generated by the implicit functions 
respectively 
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It should be noticed that the describing functions P(jω,v0), for k > 1, are not real-rational. In 
the H∞ control theory it is assumed that plant must be described by function from RH∞. For 

this reason, the function P2(jω,u) will be approximated by real-rational function P2
b(jω,u).  

From many known methods of interpolation , the method of Lagrange's multipliers, used 
here, is presented bellow. Let points (v2i,ωi) i = 1, 2,… n fulfill the equations (22). We 

define a function  
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So, the polynomial P2

n(ω) approximate the function v2(ω,u). Substituting P2
n(ω) into 

equation (21) instead of v2(ω,u) we get the describing function P2
n (jω,u) from R H∞. 

Example: Let us now find the describing functions P2
n (jω,u), P1

n (jω,u) from R H∞ of  the 
elements given by the equations (4) and (3) where the non-linear function has the form  
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From (21) for k = 4 we have 
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where v2(ω,u) is generated by the implicit function 
 

 64 30 15 02 2
4

1 2
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2 2m v m m v m u− − =π ω π  (25) 

 
Putting m1 = 1, m2= 2, u = 2 into (25) we get   

 v2 (0,2) =-1.1016, v2 (0.5,2) =-1.0232, 
 v2 (1,2) =-0.7661, v2 (2,2) =-0.2493, 
 v2 ( 4,2)=-0.0625, v2 (8,2) =-0.0156, 
 v2 (16,2)=-0.0039, v2 (32,2)=-0.0010,   
 v2 (100,2)= -0.0001 . 
 
Denoting by d(ω,u) the denominator of (24) we can write 

 d(0,2)=-171.1125, d(0.5,2)= -184.2410, 
 d(1,2)= -246.0483, d(2,2)= -755.9655, 
 d(4,2) -3.0160e+003, d(8,2)=-1.2064e+004, 
 d(16,2)=-4.8255e+004, d(32,2)=-1.9302e+005 
 
The describing function P2

n (jω,u) approximates the function (24) (by (23)) takes the form 
 

 +++−= )jω(1828.72)jω(0221.197)jω(2927.0(30 232
3 πP 1)1136.171 −  (26) 

 
The roots of the denominator of P2

3(jω,u) are equal to  -6.7275,  -0.0018+0.0091j and   
-0.0018-0.0091j. For the equation (3) the describing function P1

n (jω,u) takes the form 
 

 12321
3 )1136.171)jω(1828.72)jω(022.197)jω(2927.0()π((jω60)2,jω( −+++−=P  (27) 

 
4. COMPUTATIONAL ALGORITHM  
Now getting back to the tracking system (5), the equations (12) for the approximate plant 
take the form 
 
 u =  C1(r1,r2) – C2(v1,v2)  (28) 

 v1 = P1
n(jω,u)u (29) 

 v2 = P2
n(jω,u)u (30) 

 
where P1

n and P2
n are given by (26) and  (27).  

 
If  we substitute  
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then the system (28), (29), (30) can  be transformed  to its equivalent model matching form 
(compare equations (17)). Using the algorithms for solving the model matching problem  
[2] we can find the optimal function Q*  and then the corresponding  controller  
K*=[ C1

*, C2
*].  So, based on Theorem 1 the controller K*=[C1

*  C2
*] is optimal also for the 

tracking system (5). The algorithm for  the optimal controller Q*  in the sense of criterion 
(18), (19) has the following form: 

Step 1. Compute Y and ||Y||∞, where Y:=(I-Ui iU
~

)T1 and T2=UiU0 is inner-outer 

factorization, Ui  is inner, iU
~

= Ui (-s). 

Step 2. Find an upper bound α1 for α, where 
 α=inf{ γ: ||Y||∞< γ, ||Ζ||∞<1, dist(R, R H∞)<1}, 

 Yo=spectral factor of γ2- Y
~

Y, 
 T3Yo

-1= Vco Vci  is coprime factorization, Vco co-outer, Vci co-inner,  

 Z:= iU
~

T1Yo
-1 (I- ciV

~
Vci), 

 Zco=co-spectral factor of  I-Z Z
~

,  R:=Zco
-1 

iU
~

T1 Yo
-1 ciV

~
. 

Step 3. Select a trial value for γ in the interval (||Y||∞, α1]. 
Step 4. Compute Z and ||Z||∞. 
Step 5. If ||Z||∞ < 1, continue; if not, increase γ and return to Step 4. 
Step 6. Compute R and ||ΓR ||. Then ||ΓR || < 1 if  α < γ, so increase or decrease the value of 

γ accordingly and return to Step 3. When a sufficiently accurate upper bound for α 
is obtained, continue. 

Step 7. Find a matrix X in R H∞ such that ||R-X||∞ ≤1. 
Step 8. Solve X = Zco

-1 Uo Vco for Q in R H∞. 
 
5. CONCLUSIONS 
The presented theorem enables  to apply the standard H∞  methods to optimization of 
feedback control systems with non-linear plants. A linear, approximate two-mass 
dynamical model  was obtained with the aid of describing function method (harmonic 
linearization). The performed MATLAB simulations confirmed the consistency between 
the given non-linear ship dynamics and its linear approximation. The presented algorithm 
make it possible to find a structure of the optimal controller for the tracking a preset two-
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mass trajectory. Note that the considered methods can be generalized to include 
disturbances rejection problems [2], [3]. 
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