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MODELLING OF ORTHOTROPIC MASONRY STRUCTURES

A class of constitutive models of orthotropic namegeneous masonry materials
in the framework of elasto-plasticity theory of d#mdisplacements with energetic
hardening/softening is proposed. Analysed class cofistitutive models reduces
to the classical one for ideal elasto-plasticityttwivell-known Hoffman yield condition
for orthotropic homogeneous materials. Proposed<laf models is implemented in FEM
system ABAQUS. Constitutive relationships are impleted in FORTRAN in user
procedure UMAT. The numerical tests are proposed dheck correctness
of the implementation, and some boundary valuelprob are also solved.

MODELOWANIE ORTOTROPOW YCH KONSTRUKCJI MUROWYCH

W artykule przedstawiono sformutowanie teorii &psto  plastycznai
niejednorodnych ortotropowych materialbw murowych tzw. energetycznym
wzmocnieniem/ostabieniem. Analizowana klasa magelukuje st do znanych modeli
idealnej spezysto-plastyczn@i w warunkiem plastyczgo Hoffmana. Zaproponowan
klase modeli zaimplementowano w programie MES ABAQUSackRe konstytutywne
zaprogramowano wegyku FORTRAN w procedurzeytkownika UMAT. Przydatiio
zaimplementowanego modelu zaprezentowano na pdzyitaadania brzegowegoinania
sciany z otworem.

1. INTRODUCTION

This work confirms usefulness of the concept ofuattiral tensors in masonry
mechanics for a formulation of orthotropic failurBteria and constitutive relationships of
elasto-plasticity theory. The theory of represeatatof orthotropic scalar-valued tensor
functions and the convex analysis have been ugef]cFrom theoretical point of view,
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the orthotropic failure criterion is a surface, hding a convex set in the space of the stress
tensor. It is a scalar-valued function dependerdearen invariants of structural tensors and
the stress tensor and has to satisfy the conveedfyirement for all stress conditions.

In order to capture properly the entire range efgtiess states corresponding to the two
distinct zones (being tension and compression pats proposed 3D orthotropic plastic
criterion for a masonry material is representedviny quadratic functions of the invariants.
On the whole, it includes 15 independent matedaistants. These material parameters are
dependent of peak stress values obtained from pppte uniaxial and biaxial tests. This
criterion can be treated as a generalization ofwtbé# known Hoffman failure criterion
which was originally formulated as a quadratic fim of stress components utilizing nine
independent material parameters, cf. [4]. In thep$est situation, when only one failure
criterion is used, 12 parameters is required. ThemHoffman criterion of 9 independent
parameters may be regarded as its special casepropesed model was implemented in
frame of user subroutine UMAT in ABAQUS softwarerFsuch implementation tests for
homogenous stress and strain fields were carriedrmwing correctness of the subroutine.

2. INVARIANT FORMULATION OF A NEW CLASS OF YIELD AN D FAILURE
CONDITIONS

In the invariant formulation the two yield funct®rcan be written in the following
form:

f,(K,)-(1+Lk,)=0and f,(K,)-(1+Lxk,) =0, 1)
where L, are given constant plastic parameters,are internal hardening variables, and
f,(K,)=a"K +§"K K +¢7K,,. )

Material parametersa, b’ and ¢ =¢? >0 must be determined from uniaxial and
biaxial strength experimental data. The invaria}n];s( p=1... ,6) are given by:

trM,o, K,=trM o, K,=trM g,

K, =(trM6)" - (trM ,0)" - (tM ©)°-tM o°+M ©°+M g7
K, =(trM,6)’ - (trM ,0)° - (tM ©)°-tM &> +M ©°+M g7
Ke =(

.=

®)

3

trM,0)" - (rM @)’ - (M ,6)"—tM g*+M g°+M g2

6 =

where M, =m, Om, (no summation ovel, and m, [, =g ) and vectorsm, are vectors
of principal axes of orthotropy. Functiof), is convex with respect tg if and only if the
3% 3 matrix [blf")] is semi-positive definite. We construct the fadldimit in such a way
that the following set:
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B=BnB O B={o0T| f{(K)-1<d, @)
is convex. We also assume that at least the fumcfjois convex with respect t@ .

3. CONSTITUTIVE RELATIONSHIPS

The elastic-plastic orthotropic material is considewith the assumption of an additive
decomposition of the strain tensor

ge=g’+eg", (5)

into the elastic part® and the plastic pa#® . The elastic part is defined by the orthotropic
Hooke's law:

oW,

S
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6 —_ —_——
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os°

£ =Cg° (6)
ey’

where C is interpreted as the stiffness tensor (positivigfined, double symmetric, fourth
order tensor). Stored elastic energy functidh is the following function of orthotropic

invariants of elastic strain tensef:
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where 3@, , E and C are elasticity parameters (which are independesrh fcoordinate
system, contrary to the stiffness tensor compoherds interpretation of material
parameters from (7) is given in [6], together wighationships expressing , E and¢C via

technical elasticity parameters (e.g. Young mocarid Poisson ratios). It is worth
emphasizing thatC is an orthotropic tensor function of second orgarametric tensors

M, . In general we assume that parametric tensor3)iare different than these occurring
in (7).

Due to the convenience of implementing the modeABAQUS, yield condition is
rewritten in the following form:

f,(o.x,) :%G.Pa.o+pa.o—(l+ Lk,)=0, (8)
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where P, and p, are respectively tensor functions of the fourthd aecond order,

depending on the parametric tensobd; and material parameters defining plastic

properties.
In standard theory of elastic-plastic materialgrfolated in the stress space, only such

states of stress are allowed, for whi€h< 0. If f, <O, than state of stress is called elastic.

Plastic part of the strain tensor is defined ascaged with the yield functions (8) (or in
the form (1)):

of, (c,a’)

o =y, (P,o+p,)=V0, . )

o=

where ¥, >0 is so called plastic multiplayer. From (5) i (@fter differentiation with
respect to time and substituting (8) we obtain:

6=C.(¢-y,0,)=C,%, (10)

where C,, operator (double symmetrical fourth order tensue) evaluate after obtaining

ep

result for J/, . From the condition of conformity

v, t,(e.k,)=0, y,>0, 11
with assumption that

. . . 2

Ko = VeOa-Gu = Vo] &l (12)

we obtain plastic multiplayer as

. .Ceg
y, = 9.

= . (13)
9,-Cg, +&, g’

Denominator in (13) is always positive, which mée¢ requirementy >0 only if the
numerator (13) is positive. After substituting (18)10) we obtain:

_(9,.¢)0(cCg,)

Cr=C -
9,Cg, *+L, |

j14

The formal generalization of the proposed mode¢hésadoption in (7) so called piecewise
linear function. Then for every n-th interval ofptic variablek, we assume differenit, .
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For practical considerations we assume that tlesstspace is limited by two surfaces
of the type (1). In such case always it is needesbtve the problem of evaluating gradient
at the hyper-lines connecting these surfaces (armhled corner points). In such case we
assume the following linear combination of the gvadients:

9(c)=4g,(c)+(1-4)g,(s), A0(0,3, (15)

where the scalar parametér selection depends on the adopted algorithm. lhssumea
priori A =1/2, we get so called Koiter rule.

4. NUMERICAL IMPLEMENTATION

Constitutive relationship (10) is in the form of "highly non-linear" differential
equation which can be solved using modified Eulethod (so called “forward” or
“backward”). Therefore, (10) is replaced by therémental equation of the form:

Ao =C.(Ae-Ay,F)=C, Ac (16)

where éep is a consistent with an algorithm integrating tenstitutive relations. We
assume that for altnD[O,T] we know Ae=¢ , —¢  (controlled deformation) and we

want to calculate the stress statg, for t.,,. It is assumed than that

6., =6 —-AyC.g", (17)

n+l n+l

trl

where o), =C.g,,, is so called trial elastic stress state ag{l is a gradient for
fa (o.lnr:-l’Ka) "

It should be emphasized that the calculation ofrthdtiplier and the tensor function

trl

g, , is significantly dependent on the numerical innpdmtation. General method of

implementation of such a model is presented irofrthe example of the theory of elasto-
plasticity with the Huber-Mises (isotropy) and H(irthotropy) yield conditions, while a
detailed description of the numerical FEM implenagion is given in the monograph [4].
In the case of the constitutive relations considénethis work we can proceed similarly as

in the above articles in order to obtain the opnrzftep. The most important step is to

calculate the plastic multiplierdd), from quadratic equation of the variabldy, ,
therefore, significantly different than for Hilkgeld condition.

Implementation of the proposed model of the maltémiahe program ABAQUS is the
programming task in the FORTRAN language. In thbrgutine UMAT it is needed to
evaluate the stress and stiffness tensor at thektig time step, what always is connected
with constitutive relationship integration. Thisopedure requires the definition of stress
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and strain in the vector form according to the slled Voigt notation, which is not
convenient because of the need to write the repratsen of tensors in the bases and co-
bases. It should be pointed out that in program GBI, the standard algorithms are
available, e.g.: the Newton-Raphson and RIKS fdwvisg a nonlinear equations of
construction equilibrium.

5. NUMERICAL TEST ON STRUCTURAL LEVEL FOR TWO HOFFM AN
CRITERIA — SHEARING OF THE MASONRY WALL

Shearing of the masonry wall is modelled as theettimensional test. The main goal
of this test is to predict the failure mode. Thample presented here is a masonry wall
1.05[m] long and 0.8[m] high with a rectangular oig (EF=HG=0.2[m],
EH=FG=0.3[m]) placed 0.4[m] from axis 2 and 0.25[fnpm axis 1, cf. fig.1. The
thickness of the wall is assumed equal to 0.12[@fjearing of the wall is realized by
displacement boundary conditions: for edge DCDI# tisplacements in direction 1 and 2

of all nodes are assumed equal to zero, while 6geeABA'B’ the displacemenu, =-
0.1[mm]. For the remaining edge surfaces the zieess boundary conditions are assumed.

Fig. 1. Schematic view of the masonry wall expdsdte shearing. FEM mesh, boundary
conditions and geometry

The material constitutive model adopted in thisecssthe one described in section 3
(simplified model with Hoffman criterion). The maied parameters used for simulation are
presented in tab.1. It was assumed also that0, so we are dealing with elastic-perfectly

plastic material.
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Tab. 1. Material properties

Elastic properties Inelastic propertiesf, Inelastic propertiesf,
= E, Es
8GPa | 7.2GPal| 6.4GPa [MPa] | [MPa] | [MPa] | [MPa]| [MPa]| [MPa]
GlZ G13 GZS Ycl Yc2 YcB Ycl YcZ Yc3
3GPa | 25GPa| 2GPa 1.05 1.05 16.4 1.0 1.0 1.6
V12 l/13 V23 Ytl YIZ Yt3 Ytl Yt2 Yt3
015 | o5 0o | 025 | 025 | 025 | 10 | 1.0 | 1.0
V,= Vo, = Vo, = K12 Kia K23 K12 Kia Kos
v,E,/E | v.E/E | Vv EE, 0.4 0.4 0.4 0.4 0.4 0.4
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Fig. 2. Contour plots of the plastic strain compotge a) &}, b) &}, .

Displaying the plastic strain gives a good indigatdf the “cracked” areas in the model.
Figure 2 gives a contour plot of the plastic stre@mponents with strain localization near
corners F and H of the opening. Such behavioubgeed in experiments and in other
numerical simulations, cf.[6].

6. FINAL REMARKS

The continuum structural model for the analysisr@fsonry structures is proposed in
the paper. Constitutive relations are establishedhe framework of the mathematical
elastoplasticity theory of small displacements. s&h on the new orthotropic failure
criterion that was earlier proposed by the authities model includes a generalization of the
well known Hoffman failure criterion. That critericis chosen in order to present the
implementation of the model into the finite elem@nbgram ABAQUS. The test of the
proposed incremental-iterative algorithm of theiténelement method for an anisotropic
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continuum is presented in the paper on the exampldhe masonry wall shearing. At
present, the model may be useful in the predictérthe load capacity of masonry
structures since the implementation of the sofigmto finite element program is currently
in progress.
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