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DYNAMIC EFFECTS OF CORRUGATIONS 
 

We study the rolling motion of a railway wheel on corrugated track. For uniform 
guiding motion, the trajectory of the contact point, vertical accelerations are 
evaluated first in the rigid case, then in the case of elastic and visco-elastic contact. 
Resulting energy dissipation due to friction and percussive effects are calculated 
and resulting progress of pattern formation is simulated. 

 
 

 EFEKTY DYNAMICZNE SPOWODOWANE PRZEZ KORUGACJE 
 

Badane są zjawiska dynamiczne spowodowane ruchem tocznym koła kolejowego po 
skorugowanym torze. Przy jednostajnym ruchu postępowym osi wyznaczane są 
trejektorię punktu geometrycznego kontaktu oraz przyspieszenia pionowe, w 
pierwszej kolejności przypadek brył sztywnych, potem z uwzględnieniem lepko-
spręŜystego kontaktu tocznego. Dyssypację energii spowodowaną tarciem i efekty 
uderzeń są obliczane w celu symulacji dalszego procesu  formacji korugacji. 

 
 

1. INTRODUCTION 
Railway wheels should be round and the surface of rails even – without any pattern 

other than the desired profile. In normal operation, these ideal assumptions are often not 
fulfilled, small deviations of the nominal shape occur. If such small deviations tend to 
amplify themselves, or to copy themselves first to the contact partner and propagate in the 
effect along the track or damage other wheels, considerable damage and inconvenience may 
arise. Passenger comfort will be reduced and noise radiation increased, more frequent 
grinding will be necessary [1–3].  

Despite intensive studies of longterm effects in rail-wheel contact, the mechanisms of 
polygonalization and corrugation are still not fully understood [5].  

In this article, we give a review of some recent approaches to modeling the essential 
quantities involved, and we present results of simulations.  
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2. MODEL COMPONENTS 
2.1 Geometry 

We denote by ϕ the parameter of the wheel circumference, by x the position coordinate 

along the track, by z the vertical position. In reference configuration, without any 
perturbations, we have 
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where R denotes the nominal radius of the wheel. 
On a real railway wheel, we observe small perturbations of the Radius R, so that in practice, 
we have )(ϕRR= . Typically, the function R is sinosidal 
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where wω is the number of humps around the circumference and wa is the amplitude of the 

deviation. 
 Similarly, we have patterns on the rail surface, which we describe by 
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with the number of humps per meter rω and the amplitude ra . 

 

 
 
Fig.1. Photograph of corrugations on a rail. 
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Figure 1 presents a typical rail pattern. Of course, several sinusoidal patterns may be 

supercomposed into a trigonometric polynomial or a Fourier series, however, the most 
interesting case is that of a single dominant pattern. For academic purposes, we study a pair 
of profiles as in Figure 2, where for better visibility the amplitudes of the pattern have been 
drastically exaggerated. Actual parameters, as observed by railway operators and used for 
our calculations, are collected in Table 1. 

 
 
Tab. 1. Parameters of geometry perturbations 

parameter value unit 

ra  1e-4 m 

rω  10 1/m 

wa  1e-4 m 

wω  37 1 

0R  0.47 m 

 
We refer to [4] and [6] for more details and figures. 

 
Fig. 2 Exaggerated geometrical deviations 

 
Now, for the special case of an ideal wheel on a sinusoidally perturbed track, the center 

of the wheel has to satisfy an infinite set of constraints. In fact, unless deformations are 

allowed, around each point on the track line, a disk of radius 0R  is non-feasible for the 

wheel’s hub position. Assuming continuous contact – without lift-offs – the constraint is 
constructed in Figure 3. Here we have an invariance in the system, the angle of revolution 
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of the wheel being a cyclic variable. In the general case of non-ideal shapes of both 
partners, it is not possible to find a constraint in the 2-d projection of the state space we 
presented here. Nonetheless, for each x-position of the hub, and for each angle of 
revolution, we can determine a minimal elevation y of the hub, below which penetration of 
wheel and rail would occur. In the case of ideal bodies, we can additionally determine a 
unique point of geometrical contact and a common normal direction at that point. In [3], we 
gave a condition for uniqueness of the geometrical contact point in terms of an inequality 

between amplitudes and wave numbers ra , rω , wa  and wω . Without going into detail we 

repeat here, that for 0R , rω and wω as given in Table 1, the amplitudesra and wa are 

restricted to a very small triangle. Otherwise convexity of the wheel is lost, or at least the 
wheel is no longer convex enough to fit into the troughs in the rail surface. 

 

 
Fig. 3 Track (length in [m]) and constraint (elevation in [m]) 
 

The closer we come to the violation of the single-contact-point restriction, the more the 
constraint becomes curved. Eventually, smoothness is lost. 
 
2.1 Forces 

Obviously, railway wheels, under the load of their wheelset, bogie, car body and 
payload, are pressed against the rails, so that a loss of contact seems very unlikely.  

On the other hand, there are large masses involved, and their inertia makes it impossible 
to follow high curvatures of a constraint without extreme reaction forces. This can be seen 
from the equations of motion (4) 
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where q denotes the position coordinates, t denotes time, and superposed dots stand for time 
derivatives. The functions f and g represent the force terms and the constraints, 
respectively. M is the mass matrix. Notice that in the general unilateral case, in the second 
equation of (4), the equality sign has to be replaced by a smaller than relation. In [7] and 
[8], it has been pointed out that even for geometries that allow continuous contact, no 
realistic normal load suffices to maintain such contact. Hence, jumping of the wheel and 
plastic impacts have been studied. Figure 4 shows vertical accelerations at a moderate 
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speed and medium amplitude of corrugations on the rail only. The peaks are due to the 
nearly non-smooth geometry of the constraint g, cf. (4.2) and Figure 3. 

 
Fig. 4 Vertical accelerations [m/s2] vs time [s] 

 
If we do not allow for deformations, neither elastic nor plastic, vertical accelerations as 

in Figure 4 result from a steady forward motion of the center of the wheel. 
 
4. NUMERICAL RESULTS 
 In the previous Section, we have collected geometrical and dynamical model 
components of rail-wheel contact in the presence of corrugations. For some academic 
assumptions, it is possible to calculate contact forces and the speed of the moving load 
without solving the differential equations (4.1) with algebraic constraints (4.2). 
 Given the extreme magnitude of the resulting forces, it is obvious that compliance has 
to be considered. Further, instead of ideal rolling, rather frictional contact has to be 
assumed for the large tangential forces that would result from a zero difference in tangential 
velocity in the case of corrugated surfaces.  

Consequently, numerical integration has to be applied.  

 
Fig. 5 Vertical hub position [m] vs time [s] 

 
Two typical results for the vertical position coordinate of the wheel center are presented 

in Figure 5. In the left part, a very slow motion at 5m/s is shown. The normal load is high 
enough to press both bodies permanently together. The actual elevation is always below the 
level of the rigid constraint. However, for larger speeds, contact is regularly lost and 
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reestablished. Surprisingly, the variation of the elevation is diminished at the speed level of 
50m/s, Figure 5, right part, despite the percussions due to regular impacts.  
 
3. CONCLUSIONS 

The development of patterns on contact surfaces is a very complex process. Due to the 
high number and difficulty of the factors involved, it is still not fully understood. On the 
other hand, corrugated surfaces themselves are the source – or at least a very important 
condition – of other effects. Following earlier work of the first author and his group, we 
studied here the influence of surface imperfections of a certain type on the vertical loading 
and on the fluctuations in the progressive speed of the moving force. In other work, we 
analyzed stability regions for supported beams under moving loads. It turns out that 
corrugations cause – amongst other effects – a repeated slowdown of the longitudinal 
motion of the load, interleaved with short phases of very high velocity. This means that, 
repeatedly, the instability curves between regions are crossed. Additionally, the moving 
force also changes its value. In comparison, changes in the direction of the loading are 
negligible, as opposed to the case of columns under follower forces. Analytical methods 
alone cannot assess the impact of mentioned perturbations of the ideal case of uniform 
motion of a moving load. In a forthcoming paper, numerical calculations of the wave 
propagation under a variable force at a non-uniform speed are going to be presented. 
Further, it remains a challenge to take into account the deformability of the contact regions 
of both bodies – wheel and rail, friction and abrasion, the accumulation of plastic 
deformations and residual stresses, and hence to study the feedback loop of corrugations 
back to themselves. In particular, the preference of certain wave lengths, different on rails 
and on wheels, awaits an explanation in terms of modal instability. 
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