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STATE-SPACE CONTROL OF THE DRIVE WITH PMSM  
AND FLEXIBLE COUPLING 

 
A control system, which achieves prescribed speed and position responses, for 

electric drives with a significant torsion vibration mode is presented.  Control system 
design exploits state-space control and forced dynamics control principles.  Derived 
control algorithm respects the vector control condition by keeping the direct axis current 
component approximately zero as well as controlling the load position with prescribed 
closed loop dynamics.  Set of two observers, one on load side and the second one on 
motor side, generate all state variables necessary for control algorithm design including 
torques acting on the motor and load side to satisfy all conditions for achieving 
prescribed dynamics.  This approach allowed to eliminate position sensor on motor side.  
The simulations confirm that proposed model based position control system can operate 
with moderate accuracy.   

 
 
1. INTRODUCTION 

To reduce number of sensors for position control of the drive with flexible coupling a 
control system based on state-space control and forced dynamics control completed with 
observation of state variables is developed.  Main goal here is to verify overall position 
control algorithm together with correct function of two observers mutually interacted 
providing estimates of all the necessary state-space variables for control including of load 
torques on both sides of flexible coupling.   

Control algorithm for state-space control of load position, θL of the drive with 
permanent magnet synchronous motor (PMSM) and flexible coupling is developed in two 
consequent steps.   

First an inner motor speed control loop is formed using feedback linearisation 
principles, [1].  This control algorithm is formulated in the rotor flux fixed d_q frame 
respecting mutual orthogonality of the stator current vector and rotor magnetic flux vector 
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to achieve maximum torque of the machine, [2, 3, 4].  Applying ‘Forced Dynamics 
Control,’ (FDC) principles, [5] speed control system responses with prescribed linear first 
order dynamic with specified time constant, Tω .  Speed control system also automatically 
counteracts motor load torque by producing a nearly equal and opposite control torque 
component, provided by motor torque observer.   

State-space position control system including state-feedback completed with integral 
controller is developed as second step.  Replacement of the whole speed control loop with 
the first order delay not only linearises this loop but also substantially simplifies design of 
the overall position control system.  Design of position control algorithm exploits FDC 
principles and therefore complies also with prescribed closed-loop dynamics for load angle 
control in spite of the external load torque and the vibration mode presence.  This approach 
achieves non-oscillatory position control with a specified settling time, Tss.   

Even if state-space control principles are exploited the calculation of state feedbacks 
coefficients and integral controller constant is done by pole-placement method.  Possibility 
to exploit FDC for control of the drive with flexible coupling was already verified in [6].  
Designed control system there requires two position sensors.  One sensor is used to 
measure rotor position and the second one measures load position.  Preliminary 
experiments with this control structure confirm possibility to control load angle with 
prescribed dynamics.  Conventional approach to control of the drive with flexible coupling 
with PI and PID regulators designed by pole-placement method for speed control of two 
inertia system was described in [7]. 

Linearisation of the speed control algorithm and the design state-space based position 
control algorithm operating with one position sensor only require estimation of state 
variables including load torques.  To complete this task two observers were designed.  Due 
to state dependence of flexible load the observer on load side is designed as state observer.  
Second observer on motor side is Luenberger type and its main purpose is to estimate for 
FDC torque acting on the shaft of motor.  

The original contribution of this paper is a preliminary verification by simulation of 
proper function of the overall control system including two observers.  Simulation results 
presented further confirm that control system and observers operates in agreement with 
theoretical assumptions made under their development and design control system is capable 
to eliminate the torsion oscillations while controlling the load position with moderate 
precision.   
 
 
2. POSITION CONTROL SYSTEM DEVELOPMENT 
 

Basic idea of the position control system development is at first to linearised control 
system for speed control of the PMSM and secondly to design state-space position control 
system, which obtains all the state variables from state-space observer based on the load 
model.  
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Fig. 1  Block diagram for position control system design 

Overall position control system block diagram is shown in Fig. 1.  If compared with [6], 
designed control system needs the measurement of load position only.  This way 
elimination of position sensor on the side of PMSM is achieved.   
 
2.1 Description of PMSM and Load 

The PMSM is described in the synchronously rotating d_q co-ordinate system fixed to 
the rotor of PMSM: 

R
R

dt

d
ω=

θ  , (1) 

( )[ ]{ }LqdqdqPM
R iiLLic

J

1

dt

d
Γ−−+Ψ=

ω  , (2) 

d
d

q
d

q
Rd

d

sd u
L

1
i

L

L
pi

L

R

dt

di
+ω+

−
=  , (3) 

q
q

PM
q

R
d

q

d
Rq

q

sq
u

L

1

L

p
i

L

L
pi

L

R

dt

di
+Ψ

ω
−ω−

−
=  , (4) 

where id, iq and ud, uq are, respectively, the stator current and voltage components, θR and 
ωR are the rotor position and angular velocity respectively and  ΓL is the external motor 
torque, p is the number of pole pairs and c=3p/2. 

 

Fig. 2 shows flexible coupling representation and the differential equations, where Ks is 
spring constant, are as follow: 

LL ω=θ&  , (5) 



3590       J. VITTEK, P. MAKYS, M. POSPISIL, E. SZYCHTA, M. LUFT 

[ ]Lel
R

R J

1 Γ−Γ=θ&&  , where  ( )LRsL K θ−θ=Γ  ,  
(6) 

[ ]LeL
L

L J

1 Γ−Γ=θ&&  .  
(7) 

 

Lθ&

θR Γel 

ΓLe 

sJ

1

L

θL 

s

1

s

1

 

Ks 
 

ΓL 

LLJ θ&&

Rθ&RRJ θ&&

sJ

1

R  

Fig. 2  Representation of the flexible coupling 

 

2.2 FDC of Motor Speed 
 The rotor speed is modeled by (2), where JR is the rotor moment of inertia.  The FDC 
speed law for rotor is based on the feedback linearisation that yields the first order linear 
dynamics, where Tω  is the prescribed time constant and ωR dem is the demanded rotor speed. 
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 Setting id=0 up to nominal speed for vector control of the PMSM, [3] and equating the 
RHS of (2) and (8b) yields the following FDC law for PMSM inner speed control loop: 
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(10) 

hence id=id dem and iq=iq dem are regarded as the control variables.  Current controlled inverter 
is used to vary the stator voltage components,  ud and  uq, such a way that stator components  

id 
 and  iq

  follow their respective demands, id dem and iq dem, with zero dynamic lag.   
 Since the load torque appears on the right hand side of the demanded current, iq dem, (8) it is 
necessary to design an observer for estimation of the net load torque acting on the shaft of the 
motor (see corresponding section 3.2).  Derived equations (9) and (10) are used for FDC of 
PMSM rotor speed with the first order dynamics and prescribed settling time, Tω .  This way 
speed controlled PMSM was linearised and for the design of position control loop will be 
replaced with simple first order delay.   
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2.2 Design of State-space Load Position Control 
 Plant for position control is formed by first replacing the FDC speed control loop of 
PMSM by its ideal first order transfer function block and then integrating this block with the 
model of load.  The resulting plant for position control loop of load angle is shown in Fig. 4. 
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Fig. 3  Block diagram for position control system design 

 Coefficients for state feedback and integral controller constant for position control system 
shown as Fig. 3, are designed using pole placement method.  First the transfer function of 
position control system was expressed as: 
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Transfer function was compared with desired polynomial with multiple poles respecting Dodds 
settling time formula, [8, 16, 17] (time to achieve 95% of demanded steady-state value): 
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where ωn is natural frequency of the system and n is order of the system. Desired polynomial 
then has form: 

( ) 5
n

4
n

23
n

32
n

4
n

55
n s5s10s10s5ss ω+ω+ω+ω+ω+=ω+  (13) 

Comparing the coefficients of the same degree in (11) and (13) yields the required values of 
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3. DESIGN OF OBSERVERS 
 
3.1 Load-side Observer 
 Due to state dependence of the shaft deflection torque, ΓL the ‘load side observer’ is 
based on a real time model of the two-mass system, where ΓLe is an external load torque.  In 
this case the external torque is treated as if it is constant provided that its change over 
a period equal to the observer correction loop settling time, TsO, is negligible.  The observer 
correction loops are actuated by the error, eθ=θL- θ^

L, between the measured load position 
and its estimate from the observer.  The observer state equations are therefore as follows: 
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Following constants are defined, a1=Ks/JL , a2=1/JL , a3=Ks/JR and a4=1/JR  for real time 
system matrix form description: 
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If the error, eθ=pL –
 p^

L between the measured load position and its estimate multiplied with 
proper gain is added into each equation then observer equations written in matrix form are: 
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By subtracting of observer equations from its real time model equation the dynamical error 
system has form: 
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 To ensure convergence of the state estimates toward the real states the gains of 
observer, kp1 , kp2 , kω1 ,   kω2  and  kΓ1  must be chosen such way that dynamical error system 
satisfies condition for t→∞  εi(t)→0 .  Such convergence is guaranteed if the eigenvalues of 
the system matrix have negative real parts.   
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Under assumption of collocations of all five dynamical error system eigenvalues at λ=-ω0  
(the observers settling time can be determined by Dodds formula,(12a), which for n=5 
results in TsO

 =  9/ω0).  The desired characteristic equation has form: 
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Comparing the coefficients of the same degree in (23) and (24) yields the required values of 
observer gains: 
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Although the load torque is assumed constant in the formulation of observer real time 
model, the estimate of this torque, Γ^

Le, will follow a time varying load torque and will do 
so more faithfully as ω0 is enlarged with respect of computational step.  Block diagram of 
motor side observer is shown in Fig. 4. 
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Fig. 4  Block diagram of load side observer in Simulink 
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3.2 Motor-side Observer 
Load torque on the motor shaft needs to be estimated in ‘motor side observer’.  Due to fact 
that the form of ΓL(t) is unknown, its differential equations cannot be formed.  Motor load 
torque, ΓL is therefore treated as state variable, which is constant provided that its change over 
a period equal to the observer correction loop settling time, Tso, is negligible.  So with 
sufficiently small settling time of observer, Tso , the observer produces a net load torque 
estimate, Γ*

L(t)
  able to track real load torque, ΓL(t)

 , with very small and defined dynamic lag.  
Thus, the observer real time model is based on (1) and (2) augmented by a new state equation, 
 -dΓL/dt = 0.  The observer correction loops are actuated by the error, e*θ=θ^

r -
 θ*

r , between the 
estimated position from load side observer and its new estimate from the motor side observer.  
Block diagram of motor side observer is shown in Fig. 5. 
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Fig. 5  Block diagram of motor side observer in Simulink 

The observer state equations are therefore as follows: 
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Here,  kθ,  kω and kΓ are the observer’s correction loop gains, which can be designed by pole 
placement method.  Characteristic polynomial of the observer’s transfer function has form: 
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and yields a correction loop settling time, Tso, (defined as the time taken for |eθ(t)| to fall to 
and stay below 5% of its peak value following a disturbance).  Comparing the coefficients 
of the same degree in (29) and (30) then yields the required values of observer gains for the 
chosen settling time, Tso . 
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In spite of constant motor load torque assumed during observer real time model formulation 
its estimate, Γ∗

L, will follow a time varying motor load torque as faithfully as observer 
settling time, Tso  is reduced.   
 
 
4. VERIFICATION BY SIMULATION 
 Block diagram of overall control system for position control of the drive with flexible 
coupling in Matlab-Simulink is shown in Fig. 6.   
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Fig. 6  Overall position control system block diagram in Simulink 

The simulation results for position control of the drive with flexible coupling are presented in 
Fig. 7.  Computational step is h=1e-4 s, which corresponds to the sampling frequency achieved 
during a previous implementation of the FDC algorithm for position control.  All the simulations 
are carried out with zero initial state variables and a step load position demand, 
θL dem =6,28 radians and a prescribed settling time of Tss=0,1 s.  
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Fig. 7  Simulation results for position control of the drive with PMSM and flexible coupling 
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 An external load torque was simulated as a sinus function, ΓLe=ΓmaxsinωLt, where 
Γmax=1 Nm,  ωL=20 s-1 .  This torque was applied at t=0,6 s, being zero for the time interval 
t<0,6 s.  The settling time of the speed control loop, Tω was prescribed as Tω=Tss/2, while 
settling time of both observers was equal and set as Tso=TsO=0,1Tss.  Moments of inertia of 
motor and load were equal, JL=JR=0,0015 kgm2 , while spring constant Ks=24 Nm/rad. 
 Subplot (a) shows the ideal position response computed from prescribed transfer 
function (11) together with a real response of the control system to the step position 
demand, θdem=6,28 rad, including error between them magnified 2 times.  As can be seen 
observed and real position response show significant, though not very large, departure from 
the ideal performance, which is due to mainly non-zero iteration interval as well as time 
delays in motor torque estimation.  A torsion deflection of the spring is evident from time 
function of rotor angle, θR in subplot (b), where the oscillations with occur immediately 
after start-up of the drive and also for t>0,6 s when sinusoidal oscillations with ωL=20 s-1 
due to applied load torque are visible.  Subplot (b) also shows an estimated rotor speed, θ^

R 
from load side observer including error between them magnified 10 times. 
 Subplot (c) shows the angular velocity of the load, ωL together with its estimate, ω^

L 
and error between them magnified 10 times.  Both functions are indicating that the 
acceleration period is followed by the deceleration period, as expected.   Oscillations due 
to compensation of spring deflection during transients together with oscillations in steady 
state compensating applied load torque are clearly seen from function of rotor speed, ωR in 
subplot(d).  This subplot also contains the estimate of rotor speed, ω^

R together with their 
error magnified 10 times confirming correct function of load side observer.   Electrical 
torque,  Γel together with its estimate,  Γel

* from motor side observer are shown in 
subplot (e).  As can be seen the electrical torque,  Γel varies to counteracts the torque 
applied to the shaft of the motor, ΓL.  In the steady state, the electrical torque is transmitted 
via the torsion spring to counteract the external load torque, ΓLe applied to the load.   It 
should be noted that the inner FDC speed control loop counteracts the real torque applied to 
the rotor, ΓL but the external load torque, ΓLe , still acts on the load mass.  Proper operation 
of the load torque observer is evident in subplot (f) where functions of applied load 
torque, ΓLe together with ist estimate, Γ ^

Le , follow each other.  In spite of some departure 
from the ideal performance, the error between applied and estimated torque is mainly due to 
non-zero iteration interval and can be reduced if observer settling time, Tso  is reduced. 
 

5. CONCLUSIONS 
 A position control system based on principles of state-space control and forced 
dynamics control for electric drives with PMSM and flexible couplings between motor and 
load has been presented and verified by simulations. Implementation of two observers 
enables to eliminate position sensor on motor side.  Presented simulations confirm that the 
derived position control algorithm is capable follow prescribed ideal position response with 
relatively small delay.  
 The designed observers on motor side and load side have non-oscillatory character and 
provide estimates of all state variables for control algorithm including external load force 
acting on the shaft of PMSM and load torque on the load side.   
 Developed control system is model based therefore further investigations should be 
carried out with regard to the parameters of motor and load mismatches.  Due to prescribed 
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speed dynamics the robustness of the FDC speed control system could be improved by 
adding an outer model reference adaptive control loop.  The experimental implementation 
of the proposed load position control algorithm will follow as soon as possible. 
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