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DISSIPATION FUNCTIONS AND YIELD CONDITIONS FOR GEOL OGICAL
MATERIALS WITH INTERNAL CONSTRAINTS

General framework of modeling plasticity in geotadi materials with internal
constraints is discussed in this paper. A familyptdstic dissipation functions
devoted to soil and rock mechanics is proposedsdéhepaper is a generalization
of Drucker-Prager model and earlier author's papersvhich has dealt
with incompressible metals. The proposed functiares dependent on the three
invariants of the plastic strain rate tensor andtevéal parameters. In the space
of principal plastic strain rates the curves of stant dissipation have three axes
of symmetry in the deviatoric plane. Internal kirgical constraints in the material
are utilized. Using the potential constitutive lathe constitutive relation
for material is derived. Obtained yield surfacewvé@a conical shape in the spectral
stress space. The failure surfaces have three akesymmetry in the deviatoric
plane cross-sections. The deviatoric cross-sedtioves of the failure surface may
change from equilateral triangle through the circdmd then to the equilateral
triangle oriented in the opposite way.

FUNKCJE DYSSYPACJI | WARUNKI PLASTYCZNO S$CI MATERIALOW
GEOLOGICZNYCH Z WI EZAMI WEWN ETRZNYMI

Zaproponowano funkejdyssypacji przeznaczgndo modelowania plastyczse

w gruntach i skatach dulgcq uogdélnieniem modelu Druckera-Pragera. Funkcja
zaley od trzech niezmiennikow tensoraegkasci odksztalcenia plastycznego
i parametréw materialowych. Funkcflyssypaciji stosujesdo wyznaczenia relacji
konstytutywnej materiatu idealnie plastycznego zzami wewetrznymi oraz
warunku plastyczngi. Przekroje dewiatorowe powierzchni plastyczmomog;
zmienia sie od tréjkgtnego do kotowego, z@otudniki & prostoliniowe.

1. INTRODUCTION

The deformation and strength characteristic of @giohl materials such as sands, clay
and rock are usually modeled within the framewoflsmall strains and rate-independent
elastoplasticity [1,4]. This type of constitutiveodeling is based on the additive split of
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strain rate tensor into elastic and plastic paits,¢, +&, [2,7]. The elastic parg, is
governed by Hooke’s law. The plastic part of ssaip can be defined using concept of the

yield function (or plastic potential) given in siees, or by the plastic dissipation function,
which is a function of plastic strain rate tens#)5]. Perfectly plastic model based on the
dissipation function for isotropic material is aymdd in details in this paper. In the
literature related to modeling plasticity, there asvery few simple models based on
dissipation function approach [4,6].

2. INTERNAL CONSTRAINTS IN MATERIAL

In case of modeling of plasticity in geological ewdls there is a need to introduce
internal constraints. Constraints can be used tdetiacompressibility [8], or develop dual
formulation for linear meridians [5,6], or even raan case of lack of the associative plastic
flow in the frictional materials [3]. Derivation @onstitutive models based on the Drucker-
Prager and the Coulomb-Mohr yield conditions reguirsage of the second type of
constraints from the mentioned. Formulation of basjuations for this type of models is
discussed in the following.

Dissipation function suitable for isotropic matéigaregarded in a general form,

D(p,q,cosd) = ( 1)

or in case of incompressible material can be medifo D, (q,cos3o) , [8]. General form
of the constraint function can be of the form:

W( p gcos®)= C. )
The following invariants of plastic strain rate $en¢, are used throughout the paper:
1. > Jere? . _.p
=—tr¢ , = /tré&, cosp= ,  Wwhere ¢ =¢ ——=I 3)
R SN

p

is the deviator of¢ . Constitutive relationship of perfectly plastic nmaé with internal
constraints is defined using Lagrange potentighaform,

P(p gcos¥)= D, (q,cosp)-uW pg,cogg, (4)
in which y is the Lagrange multiplier. Stress tensois then given by the formula,

S P By W g 20 (5)
0 0 0 P

p P P

which, by usage of (4), leads to the following dé@ntve relationship:

U:azgz+0'393‘ﬂ(V191+V292+V393)- (6)
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Derivatives of the invarianté p, g, cosfiio), given by (3), with respect to the plastic strain
tensor define tensor generators,

op 1 aq 1, _dcos¥_ 3/ ., qcos@. O
=P -~ g="t=Zg, g-= = & - -l @
% 0%, /3 % %, q° % 0%, @ " Ve %73 )

Derivatives of the dissipation function and conistréunction according to (5) are:

_aD, _ 9D, 0w 0w W
a, =—— a.

, =————, and =—, =—, = . 8
2 aq ° dcosP £ op £ aq € dcosPP ®
Calculating trace in (6) we get the reaction sttesatroduced constraints,
W = ~—=tre =~ 9)(
1 \/é )

When y, =1, we have simplification toy =-¢&, which leads to convenient form of
kinematic constraints to be introduced in the sexttions. Deviatoric part of relation (6) is,

s=(a2—,uy2)gz+(a3—,uy3) O (10)

The stress tensor function (6) or (10) is a homegas function degree zero with
regard to the plastic strain rate tensor, and thisscondition implies a failure criterion of

the form: f (¢) =0, [5,7].

3. DRUCKER-PRAGER MODEL

One of the simplest models used in modeling oftigli&g in geological materials is the
classical Drucker-Prager (DP) model [4,5]. In thaint we formulate the DP model using
concept of dissipation function, and then in thetsection we propose its generalization to
cover wider range of possible material behaviorg][1

Nonnegative, convex and homogeneous degree oneaaegitiect to the plastic strain rate
tensor dissipation function is as follows,

D(q)=Bq, (11)

where B>0 is a material parameter. In literature one caul fitifferent mathematical
forms of dissipation function, but all of them aeguivalent [5]. Internal kinematic
constraints in case of DP material are defined as,

W(pg=p- A0, (12)

with A= 0, being material constant.
In case of this material with internal constrajritse potential for determination of
stresses is given by the simplified formula,

P(p.a)=D(q-uW( pd= Beu( p Ap (13)
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where u is the Lagrange multiplier. Differentiation of ftion (13) results in,
oP 1 1 1
=—=B| =&, |-ul—=I-A-¢e_ |. 14
° o, [q”] #(@ qp] ~

The following invariants of the stress tenser and the stress deviatss are used
throughout the paper:

1 > Jetrs? 1
= tre, =/trs?, ®= , where s=¢-—¢l=06-k. (15
& NG re r rs cos W c \/55 G (15)
Splitting (14) into the cubic and deviatoric pants get,
1,
u=-¢, s=(B—A<‘)aep, (16)

and squaring (16), and then calculating trace,aameobtain the DP yield condition,
f(c)=r+Aé-B=0, 17

compare [5]. Surface defined by equation (17) ¢®mical surface of revolution, with axis
being the hydrostatic pressure afis

Graphical interpretation of the yield condition7{land the dissipation function (11)
with the constraints (12) is shown in fig.1. Dupéses of the plastic strain raée and the
stress tensos by means of invariantfp, q) and (&,r) are given in the fig.1. Meaning of

the material parameter& and B is also explained. In the spa(:p, q) constant dissipation
is represented by one point, and in spectral spa@presented by a circle in the deviatoric
plane for p= AD/ B, fig.1. Graphical interpretation of the potentialv (14) in plastic
strain rate space and tangential stress spacelsveshown. Original and dual spaces

highlight geometrical sense of the concept of danste relationship formulation,
dissipation, constraints and yield condition.

A A r
AD
=0 5 v =0
| v N ) Fig.1. Graphical interpretation of
D = const. \ . 1 dissipation function, its gradient and
| /s B dual (plastic strain rate and stress)
N S }; spaces, as well as, kinematic
BEi -k > constraints fOI: D(ucker-Prager
3 ep p constitutive relationship
pg | B4 | -

When A=0 condition (17) coincides with Huber-Mises yield ndition:
f(¢)=r-B=0, while constraints define incompressibilityW(p)= p=0, but
dissipation function remains the same as (11), [8].
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4. GENERALIZATION OF DRUCKER-PRAGER MODEL
Generalization of dissipation function (11) canpbeposed in the following form,

D(q,cos3) = Bq cog/ , where :%arccos(a cos@) . (18)

Because of non-negativity requirement the size mpatar must beB>0. The shape
parametera must be in the rang|e7| <1 to preserve convexity of the dissipation function.
Graphs of the dissipation (18), representedDa(q,(p) for the selected values af are
shown in fig.2. The dissipation function definex@ne type surfaces with the vertex at
D(0,¢) = 0. The shape of constant dissipation curves in thaatbric plane of spectral
space of¢, is governed by the shape parameter. For practisel in mechanics of
geological materials the shape parameter shouikbative in (18).
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Fig.2. Cones of the dissipation function for: @)= -0.5, b) a =-1

Internal constraints in frictional material arewws®d in the following form:
W(p gcosyp)= p- Aqgcog = |, (19)

where A=0 being the slope parameter, whilgt is defined in (18). Graphs of the
constraints (19) in the space of kinematical iraais (p, q,w) are cones with vertex

located in the poin{ p;q) =(0;0), and A defines the slope of cones. Cone axis is fhe

axis, while the shape of deviatoric cross-sectiogaverned byr .
Potential for the proposed material descriptiorhwiternal constraints is defined as,

P(p gcosy)=Bqcog —u( p- Aqcag). (20)

The constitutive relationship of perfectly plagnaterial is:

oP
0= =00, 40,05 (110,42 04V 50). (21)

p
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Derivatives of the dissipation function (18) andhstraints function (19) with respect to the
invariants( p, g,cos ) are:

(22)

a siny a siny

, and y, =1, =-Acosy/ , =-A - .
3sin3y < Ve RANRE q3sm3//
Calculating trace of equation (21) one can getréaetion stress§ = -y, for the applied
internal constraints. Multipliers can be evaluated from a boundary valued probldm [5

Using obtained results the constitutive relatiopsfor deviatoric part of (21) can be
expressed as:

a, =Bcosy, a,=Bq

a sing

=C c :
STCOOH G gy &

(23)

WhereC(E) = B- A¢ is a linear function of the stress invariaht

Using the deviatoric part (23) of constitutive telaship for derivation of the stress
invariantsr and cos 3@, defined in (15), we get the following results:

2 2 3 3 1_ 2 2 1_ 2 2
r—2=1—1—a2, Zar—scosi®= Ha’- ( a ) == ( 7 ) -, (24)
C (1+2cos®) C (1+2cos®%)” (¥ 2cosp)

In equations (24), invariangy is the kinematical parameter, which can be eliteicia
Elimination of ¢ allows for expression of the yield condition aguaction of the stress
invariants and material constants,

f(o‘):[3Cr2—3(2—0’2)C3—ZZH’SCOSG)T— (l}az)(CZ—rz)sz _ (25)

Explicit form of the yield condition expressed byess invariants and simultaneously
explicit form of the dissipation function can betaibed only in case of very simple
models, see [1,4,5,6] for further details. The pnésd model involves the first, second and
third invariants where the formulation of equatiasdgn explicit mathematical form. The

constant dissipation curve and yield surfatf:eéa) =0, are shown in fig.3 and fig.4.

In case ofa =-1, yield condition (25) coincides with the generatizRankine (R)
yield criterion, f(c)=2r°cos®+ §B-A¢&)r’-(B- AE)3 = (_ When a=0, the
Drucker-Prager yield condition can be obtained f(@8), f () =2r -v/3(B—A¢) = 0. In

the range-1<a <0, curves shown in fig.4 can change continuouslynfitbhe R to DP
yield conditions.

It is convenient to use another shape parametérchgar graphical interpretation in the
stress space instead of the shape parametesee fig.3b. The shape parameter of yield
condition in the deviatiric cross-section is defiras:
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=i, then a(t) =M. (26)

[ 2(t-t+1)

2
\EG3

Fig.3. (a) Dissipation function; (b) deviatoric @s-section of yield condition far=1.6

Parametersy, = q(0) and q. = q(7z/3) used in (26) are values of the second invariant of

plastic strain rate deviator calculated from diatign (18), q(¢) = D, /(Bcosy), where
D. is constant value of dissipation. Interpretatidrite stress and strain rate invariants

used in both spaces is given in fig.3. Parametgerand r. used in (26) are values of the

second stress deviator invariant obtained fronegah (25). Sub-indexl stands for the
tension meridian: ©=0 (o0,20,=0,) and sub-indexC means the compression

meridian: © = 77/ 3 (o, =0, 2 g,) of the yield condition. From fig.3 it can be se#mt
@=0 and ¢= 7/ 3 are axes of symmetry of the dissipation functiompgs, while® =0

and © =77/ 3 are axes of symmetry of the yield condition grajpphthe deviatoric plane.
Material parameterd\, B and1/2<t < 2 can be derived using typical experimental tests:
uniaxial tension and compression, biaxial compossiThe shape parametér is then
expressed by the yield stresses.

5. CONCLUSIONS

The perfectly plastic material model based on tissipgiation function was proposed.
The dissipation function is useful in modeling pilagproperties of isotropic geological
materials [2]. Failure criterion have desired pmbies: three axes of symmetry in the
deviatoric plane and shape may change between atgpall triangle and circle.
Determination of parameters from experimental tesstsmple to perform. A wide range of
possible change of the material parameters preggoonvexity can cover majority of the
material behaviors [1,4,6]. Graphs of the yieldditions in the deviatoric cross-section for

several values of the shape paramda@[l, 2] are shown in fig.4.
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Fig.4. Possible changes in shape of the yield d@andin deviatoric cross-section

The generalization of DP model is proposed. Thsigigion and the yield criterion are
expressed in analytical explicit form - a very féwthe literature is available. Further
generalization of the proposed model can be dohe.proposed dissipation function and
the yield condition can be applied to the limit lgsess and computer applications for soil
and rock mechanics.
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