
TRANSCOMP – XIV INTERNATIONAL CONFERENCE 
COMPUTER SYSTEMS AIDED SCIENCE, INDUSTRY AND TRANSPORT 

Plasticity, soils, rocks, 
dissipation function, internal constraints, 
constitutive relationships, yield condition 

Aleksander SZWED1 
 
 
 

DISSIPATION FUNCTIONS AND YIELD CONDITIONS FOR GEOL OGICAL 
MATERIALS WITH INTERNAL CONSTRAINTS 

 
General framework of modeling plasticity in geological materials with internal 
constraints is discussed in this paper. A family of plastic dissipation functions 
devoted to soil and rock mechanics is proposed. Present paper is a generalization  
of Drucker-Prager model and earlier author’s papers, which has dealt  
with incompressible metals. The proposed functions are dependent on the three 
invariants of the plastic strain rate tensor and material parameters. In the space  
of principal plastic strain rates the curves of constant dissipation have three axes  
of symmetry in the deviatoric plane. Internal kinematical constraints in the material 
are utilized. Using the potential constitutive law the constitutive relation  
for material is derived. Obtained yield surfaces have a conical shape in the spectral 
stress space. The failure surfaces have three axes of symmetry in the deviatoric 
plane cross-sections. The deviatoric cross-section curves of the failure surface may 
change from equilateral triangle through the circle and then to the equilateral 
triangle oriented in the opposite way. 

 
 

FUNKCJE DYSSYPACJI I WARUNKI PLASTYCZNO ŚCI MATERIAŁÓW 
GEOLOGICZNYCH Z WI ĘZAMI WEWN ĘTRZNYMI 

 
Zaproponowano funkcję dyssypacji przeznaczoną do modelowania plastyczności  
w gruntach i skałach będącą uogólnieniem modelu Druckera-Pragera. Funkcja 
zaleŜy od trzech niezmienników tensora prędkości odkształcenia plastycznego  
i parametrów materiałowych. Funkcję dyssypacji stosuje się do wyznaczenia relacji 
konstytutywnej materiału idealnie plastycznego z więzami wewnętrznymi oraz 
warunku plastyczności. Przekroje dewiatorowe powierzchni plastyczności mogą 
zmieniać się od trójkątnego do kołowego, zaś południki są prostoliniowe. 

 
 

1. INTRODUCTION 
The deformation and strength characteristic of geological materials such as sands, clay 

and rock are usually modeled within the framework of small strains and rate-independent 
elastoplasticity [1,4]. This type of constitutive modeling is based on the additive split of 
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strain rate tensor into elastic and plastic parts, e p= +ε ε ε& & &  [2,7]. The elastic part eε&  is 

governed by Hooke’s law. The plastic part of strains pε&  can be defined using concept of the 

yield function (or plastic potential) given in stresses, or by the plastic dissipation function, 
which is a function of plastic strain rate tensor [4,5]. Perfectly plastic model based on the 
dissipation function for isotropic material is analyzed in details in this paper. In the 
literature related to modeling plasticity, there is a very few simple models based on 
dissipation function approach [4,6]. 
 
2. INTERNAL CONSTRAINTS IN MATERIAL 

In case of modeling of plasticity in geological materials there is a need to introduce 
internal constraints. Constraints can be used to model incompressibility [8], or develop dual 
formulation for linear meridians [5,6], or even more in case of lack of the associative plastic 
flow in the frictional materials [3]. Derivation of constitutive models based on the Drucker-
Prager and the Coulomb-Mohr yield conditions require usage of the second type of 
constraints from the mentioned. Formulation of basic equations for this type of models is 
discussed in the following. 

Dissipation function suitable for isotropic material is regarded in a general form, 

( ), ,cos3 0D p q φ =                                                          (1) 

or in case of incompressible material can be modified to ( ),cos3IND q φ , [8]. General form 

of the constraint function can be of the form: 

( ), ,cos3 0W p q φ = .                                                      (2) 

The following invariants of plastic strain rate tensor pε&  are used throughout the paper:  
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is the deviator of pε& . Constitutive relationship of perfectly plastic material with internal 

constraints is defined using Lagrange potential in the form, 

( ) ( ) ( ), ,cos3 ,cos3 , ,cos3INP p q D q W p qϕ ϕ µ ϕ= − ,                          (4) 

in which µ  is the Lagrange multiplier. Stress tensor σ  is then given by the formula, 
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σ
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           if           p ≠ε 0&                                 (5) 

which, by usage of (4), leads to the following constitutive relationship: 

( )2 2 3 3 1 1 2 2 3 3α α µ γ γ γ= + − + +σ g g g g g .                                  (6) 
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Derivatives of the invariants ( ), ,cos3p q φ , given by (3), with respect to the plastic strain 

tensor define tensor generators, 
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Derivatives of the dissipation function and constraint function according to (5) are: 
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Calculating trace in (6) we get the reaction stress to introduced constraints, 

1

1
tr

3
γ µ ξ= − = −σ .                                                 (9) 

When 1 1γ = , we have simplification to µ ξ= − , which leads to convenient form of 

kinematic constraints to be introduced in the next sections. Deviatoric part of relation (6) is, 

( ) ( )2 2 2 3 3 3α µ γ α µ γ= − + −s g g .                                       (10) 

The stress tensor function (6) or (10) is a homogeneous function degree zero with 
regard to the plastic strain rate tensor, and thus this condition implies a failure criterion of 
the form: ( ) 0f =σ , [5,7]. 

 
3. DRUCKER-PRAGER MODEL 

One of the simplest models used in modeling of plasticity in geological materials is the 
classical Drucker-Prager (DP) model [4,5]. In this point we formulate the DP model using 
concept of dissipation function, and then in the next section we propose its generalization to 
cover wider range of possible material behaviors [1,6]. 

Nonnegative, convex and homogeneous degree one with respect to the plastic strain rate 
tensor dissipation function is as follows,  

( )D q B q= ,                                                           (11) 

where 0B >  is a material parameter. In literature one can find different mathematical 
forms of dissipation function, but all of them are equivalent [5]. Internal kinematic 
constraints in case of DP material are defined as, 

( ), 0W p q p Aq= − = ,                                                  (12) 

with 0A ≥ , being material constant.  
 In case of this material with internal constraints, the potential for determination of 
stresses is given by the simplified formula, 

( ) ( ) ( ) ( ), ,P p q D q W p q B q p Aqµ µ= − = − − ,                            (13) 
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where µ  is the Lagrange multiplier. Differentiation of function (13) results in, 

1 1 1

3
p p

p

P
B A

q q
µ   ∂= = − −   ∂    

σ e I e
ε

& &
&

.                                  (14) 

The following invariants of the stress tensor σ  and the stress deviator s  are used 
throughout the paper:  
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Splitting (14) into the cubic and deviatoric parts we get,  

µ ξ= − ,             ( ) 1
pB A

q
ξ= −s e& ,                                    (16) 

and squaring (16), and then calculating trace, one can obtain the DP yield condition, 

( ) 0f r A Bξ= + − =σ ,                                               (17) 

compare [5]. Surface defined by equation (17) is a conical surface of revolution, with axis 
being the hydrostatic pressure axis ξ .  

 Graphical interpretation of the yield condition (17) and the dissipation function (11) 
with the constraints (12) is shown in fig.1. Dual spaces of the plastic strain rate pε&  and the 

stress tensor σ  by means of invariants ( ),p q  and ( ),rξ  are given in the fig.1. Meaning of 

the material parameters A  and B is also explained. In the space ( ),p q  constant dissipation 

is represented by one point, and in spectral space is represented by a circle in the deviatoric 
plane for /p AD B= , fig.1. Graphical interpretation of the potential law (14) in plastic 

strain rate space and tangential stress space are also shown. Original and dual spaces 
highlight geometrical sense of the concept of constitutive relationship formulation, 
dissipation, constraints and yield condition. 

 

 
 
 

Fig.1. Graphical interpretation of 
dissipation function, its gradient and 
dual (plastic strain rate and stress) 
spaces, as well as, kinematic 
constraints for Drucker-Prager 
constitutive relationship 

When 0A =  condition (17) coincides with Huber-Mises yield condition: 

( ) 0f r B= − =σ , while constraints define incompressibility: ( ) 0W p p= = , but 

dissipation function remains the same as (11), [8]. 
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4. GENERALIZATION OF DRUCKER-PRAGER MODEL 
Generalization of dissipation function (11) can be proposed in the following form, 

( ),cos3 cosD q Bqφ ψ= ,         where       ( )1
arccos cos3

3
ψ α φ= .                   (18) 

Because of non-negativity requirement the size parameter must be 0B > . The shape 

parameter α  must be in the range 1α ≤  to preserve convexity of the dissipation function. 

Graphs of the dissipation (18), represented as ( ),D q φ  for the selected values of α  are 

shown in fig.2. The dissipation function defines a cone type surfaces with the vertex at 

( )0, 0D φ = . The shape of constant dissipation curves in the deviatoric plane of spectral 

space of pε&  is governed by the shape parameter. For practical use in mechanics of 

geological materials the shape parameter should be negative in (18). 
 

a)   b)   
 
Fig.2. Cones of the dissipation function for: a) 0.5α = − , b) 1α = −  
 

Internal constraints in frictional material are assumed in the following form: 
 

( ), ,cos3 cos 0W p q p A qφ ψ= − = ,                                          (19) 

 
where 0A ≥  being the slope parameter, whilst ψ  is defined in (18). Graphs of the 

constraints (19) in the space of kinematical invariants ( ), ,p q φ  are cones with vertex 

located in the point ( ) ( ); 0;0p q = , and A  defines the slope of cones. Cone axis is the p - 

axis, while the shape of deviatoric cross-section is governed by α . 
Potential for the proposed material description with internal constraints is defined as,  

( ) ( ), ,cos3 cos cosP p q B q p A qφ ψ µ ψ= − − .                                (20) 

The constitutive relationship of perfectly plastic material is: 

( )2 2 3 3 1 1 2 2 3 3
p

P α α µ γ γ γ∂= = + − + +
∂

σ g g g g g
ε&

.                        (21) 
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Derivatives of the dissipation function (18) and constraints function (19) with respect to the 
invariants ( ), ,cos3p q φ  are: 
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Calculating trace of equation (21) one can get the reaction stress, ξ µ= − , for the applied 

internal constraints. Multiplier µ  can be evaluated from a boundary valued problem [5]. 

Using obtained results the constitutive relationship for deviatoric part of (21) can be 
expressed as: 
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where ( )C B Aξ ξ= −  is a linear function of the stress invariant ξ .  

Using the deviatoric part (23) of constitutive relationship for derivation of the stress 
invariants r  and cos3Θ , defined in (15), we get the following results: 
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In equations (24), invariant ψ  is the kinematical parameter, which can be eliminated. 

Elimination of ψ  allows for expression of the yield condition as a function of the stress 

invariants and material constants, 

( ) ( ) ( )( )2 32 2 3 3 2 2 23 3 2 2 cos3 4 1 0f C r C r C rα α α = − − − Θ − − − = σ .          (25) 

Explicit form of the yield condition expressed by stress invariants and simultaneously 
explicit form of the dissipation function can be obtained only in case of very simple 
models, see [1,4,5,6] for further details. The presented model involves the first, second and 
third invariants where the formulation of equations is in explicit mathematical form. The 
constant dissipation curve and yield surface, ( ) 0f =σ , are shown in fig.3 and fig.4. 

In case of 1α = − , yield condition (25) coincides with the generalized Rankine (R) 

yield criterion, ( ) ( ) ( )33 22 cos3 3 0f r B A r B Aξ ξ= Θ + − − − =σ . When 0α = , the 

Drucker-Prager yield condition can be obtained from (25), ( ) ( )2 3 0f r B Aξ= − − =σ . In 

the range 1 0α− ≤ ≤ , curves shown in fig.4 can change continuously from the R to DP 
yield conditions.  

It is convenient to use another shape parameter with clear graphical interpretation in the 
stress space instead of the shape parameter α , see fig.3b. The shape parameter of yield 
condition in the deviatiric cross-section is defined as: 
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a)  b)    
 

Fig.3. (a) Dissipation function; (b) deviatoric cross-section of yield condition for 1.6t =  
 
Parameters ( )0Tq q=  and ( )/ 3Cq q π=  used in (26) are values of the second invariant of 

plastic strain rate deviator calculated from dissipation (18), ( ) ( )/ cosCq D Bφ ψ= , where 

CD  is constant value of dissipation. Interpretation of the stress and strain rate invariants 

used in both spaces is given in fig.3. Parameters Tr  and Cr  used in (26) are values of the 

second stress deviator invariant obtained from criterion (25). Sub-index T  stands for the 
tension meridian: 0Θ =  ( 1 2 3σ σ σ≥ = ) and sub-index C  means the compression 

meridian: / 3πΘ =  ( 1 2 3σ σ σ= ≥ ) of the yield condition. From fig.3 it can be seen, that 

0φ =  and / 3φ π=  are axes of symmetry of the dissipation function graphs, while 0Θ =  

and / 3πΘ =  are axes of symmetry of the yield condition graphs in the deviatoric plane. 
Material parameters A , B  and 1/ 2 2t≤ ≤  can be derived using typical experimental tests: 
uniaxial tension and compression, biaxial compression. The shape parameter t  is then 
expressed by the yield stresses. 
 
5. CONCLUSIONS 

The perfectly plastic material model based on the dissipation function was proposed. 
The dissipation function is useful in modeling plastic properties of isotropic geological 
materials [2]. Failure criterion have desired properties: three axes of symmetry in the 
deviatoric plane and shape may change between equilateral triangle and circle. 
Determination of parameters from experimental tests is simple to perform. A wide range of 
possible change of the material parameters preserving convexity can cover majority of the 
material behaviors [1,4,6]. Graphs of the yield conditions in the deviatoric cross-section for 
several values of the shape parameter [ ]1,2t ∈  are shown in fig.4. 
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Fig.4. Possible changes in shape of the yield condition in deviatoric cross-section 
 

The generalization of DP model is proposed. The dissipation and the yield criterion are 
expressed in analytical explicit form - a very few in the literature is available. Further 
generalization of the proposed model can be done. The proposed dissipation function and 
the yield condition can be applied to the limit analysis and computer applications for soil 
and rock mechanics. 
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