logistyka.net.pl - wortal logistyczny | logistyka | e-logistyka | TSL

PARTNER PORTALU:

A+ A A-

Źródła władzy gospodarczej w łańcuchach dostaw - wyniki badań

Oceń ten artykuł
(0 głosów)

Do zweryfikowania wyników badań ankietowych związanych z ustaleniem różnych form władzy gospodarczej w łańcuchach dostaw zastosowano analizę czynnikową. Celem analizy czynnikowej jest sprowadzenie informacji zawartych w wielu zmiennych do niedużej liczby zastępujących je czynników. Analiza czynnikowa ma dwa główne zastosowania:

  • uproszczenie zbioru danych przez zredukowanie liczby współzależnych zmiennych
  • zidentyfikowanie leżących u podstaw czynników wspólnych, czyli struktury i wymiarowości danych.

Czynnik jest po prostu zmienną, która nie jest bezpośrednio obserwowalna, ale jest wyznaczana ze zmiennych wejściowych.
Czynnik może być także postrzegany jako pewien indykator grupujący określone zmienne wejściowe.
Istnieją zasadniczo dwa podejścia w analizie czynnikowej:

  • analiza głównych składowych (ang. principal component analysis)
  • analiza wspólnego czynnika (ang. commonfactor analysis).

W analizie głównych składowych rozpatruje się całkowitą wariancję w danych. Analiza głównych składowych jest zalecana, gdy chodzi o określenie minimalnej liczby czynników, które są obliczane dla maksymalnej wariancji w danych, wykorzystywanych kolejno w analizie wielowymiarowej. Z kolei w analizie wspólnego czynnika, czynniki są estymowane tylko na wspólnej wariancji. Ta metoda jest zalecana, gdy chcemy identyfikować leżące u podstaw wymiary. Ta metoda jest także znana pod nazwą głównych osi wymiarów (ang. principal axis factoring). Do badanej próby przedsiębiorstw zastosowano rotację varimax z normalizacją Kaisera przy wykorzystaniu programu SPSS w celu ułatwienia interpretacji wyników. Rotacja varimax poszukuje takiego zestawu ładunków czynnikowych, że każdy czynnik ma pewne ładunki bliskie zero, a pewne ładunki bliskie -1 lub +1. Logika jest taka, że interpretacja jest najłatwiejsza kiedy korelacje zmienna - czynnik są albo bliskie +1 albo -1, wskazując jasno związek pomiędzy zmienną a czynnikiem, zaś bliskie 0 wskazują na brak powiązań.

Z przeprowadzonej selekcji czynników, według kryterium Kaisera, uzyskano 5 zmiennych objaśniających.

Ostatnio zmieniany piątek, 09 marzec 2012 08:47

Newsletter

Z ostatniej chwili

  • 1
  • 2
  • 3

PKN ORLEN rusza z budową własnej sieci ładowarek elektrycznych w…

PKN ORLEN rusza z budową własnej sieci ładowarek elektrycznych w Polsce

Koncern rozpoczyna pilotażowy projekt instalowania szybkich ładowarek do samochodów elektrycznych na swoich stacjach paliw. Właśnie...

Poczta Polska S.A. i PKP S.A. chcą współpracować na rzecz…

Poczta Polska S.A. i PKP S.A. chcą współpracować na rzecz rozwoju logistyki

Dwie z największych spółek Skarbu Państwa: PKP S.A. i Poczta Polska S.A. podpisały list intencyjny...

Toyota Motor Europe i Dassault Systèmes wspólnie pracują nad cyfrowym…

Toyota Motor Europe i Dassault Systèmes wspólnie pracują nad cyfrowym marketingiem nowej generacji

Firmy Dassault Systèmes i Toyota Motor Europe podpisały trzyletnią umowę, w ramach której będą pracować...

Ostatnio na forum

Ogłoszenia

 Instytut Logistyki i Magazynowania

Logowanie

LOGOWANIE

Rejestracja

Rejestracja użytkownika
lub Anuluj