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ANALYSIS OF FRACTIONAL ELECTRICAL CIRCUITS
IN TRANSIENT STATES

Using the Caputo definition of fractional derivaghintegral it is shown
that the mesh method can be also applied to arsabfsfractional linear electrical
circuits in transient state. Using the mesh metitad shown that the reciprocity
theorem is also valid for fractional linear circaitin transient state. The classical
Thevenin theorem and Norton theorem are extefwfeflactional linear electrical
circuits.

ANALIZA LINIOWYCH OBWODOW ELEKTRYCZNYCH
NIECALKOWITEGO RZ EDU W STANIIE NIEUSTALONYM

Korzystagc z pochodno-catki Caputogdu niecatkowitego uogélniono metod
oczkow na rozga¢zione obwody elektryczneedu niecatkowitego w stanach
nieustalonych. Wykazande: 1) zasada wzajemsm jest rOwnié prawdziwa
dla liniowych obwodéw elektrycznych niecatkowitegredu, 2) twierdzenie
0 zasgpczym:zrodle napeciowym i twierdzenie o zagtczymzrédle prgdowym
sq réwniez prawdziwe dla liniowych obwoddéw elektrycznych alfleawitego rzdu
w stanie nieustalonym

1. ITRODUCYION

The mesh method and the node method are the basiods of analysis of linear
electrical circuits [1, 4, 6]. In this analysis theciprocity theorem, the classical Thevenin
theorem and Norton theorem play an important role.
Recently a dynamical development of the fractidimear systems theory can be observed
[11-13]. An overview of state of art in positiveysteems theory is given in the monograph
[10]. The stability of fractional linear discretieae and continuous-time systems has been
investigated in [2, 3, 5, 8, 9].
In this paper it will be shown that the mesh methad be applied to analysis of fractional
linear circuits in transient state and the cladsieciprocity theorem, Thevenin theorem
and Norton theorem will be extended for fractidivaar circuits in transient state.
The paper is organized as follows. In section 2bthsic Caputo definition of the fractional
derivative-integral and the fractional state equatind its solution are recalled. An
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extension of the mesh method for the fractionadincircuits in transient state are given in
section 3.In section 4 the reciprocity theorem»iterded for fractional linear circuits in
transient state and in section 5 the classical &hievtheorem and the Norton theorem are
extended for fractional linear circuits in trangietate. Concluding remarks are given in
section 6.

2. DERIVATIVE-INTEGRAL OF FRACTIONAL ORDER AND SOLU TION TO
STATE EQUATIONS OF LINEAR SYSTEMS

In this paper the following Caputo definition ofethderivative-integral of fractional
order will be used [10-13]

def(t) f (1)
= dr, n-1<a<n, nON={12,... 1
dta I—(n _a,) J(: (t _ Z.)a+1—n {l } ( )
where
r(x) = j te*dt, Re(x) >0 )
0

is the gamma function and

o) =210 ©
dr’

is the classicah order derivative.
It is easy to show [10-12] that the Laplace tramsfof (1) has the form

dﬂf t I fﬂ t st — Y a-k £ (k-1)
L|: dtf’}:! dt(”)e dr=s F(s)—;s f &2 (0+) 4)

where F(s) = [ f ()] .
Consider the linear continuous-time of the fractioordera, 0 < @ <1 system described
by the state equation

dox(t) _

dt”

where x(t) OR", u(t)OR™ are the state and input vectors afd R™, BOR™™ (the set of
real nxm matrices).
Theorem 1.Solution of the equation (5) satisfying the irit@@ndition x(0) = x, has the
form

= AX(t) + Bu(t) (5)

X(t) = @, (t)%, +j<D(t—r)Bu(r)dr (6)

where
o Ak ka kt(k+l)a -1

D, () = ;:‘I'(k a+1) o(t) = ZW O<a<l (7)
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3. ANALYSIS OF THE FRACTIONAL LINEAR CIRCUITS BY TH E USE OF THE
MESH METHOD

Let the currentc(t) in the condensator with the capad@ybe thea order derivative of
its chargey(t)

d’ Q(t)

i (t)= 8aj

Using q(t) =Cu.(t) we obtain

du.(t)
dt”

whereuc(t) is the voltage on the condensator.

Similarly, let the voltageu, (t) on coil (inductor) with the inductande be thep order
derivative of its magnetic flus(t)

=coie 8b]

d’w(t)
u (t)= 9al
== |
Taking into account tha(t) = Li _(t) we obtain
d’i_(t)
u (t)=L—=—= e bj9

whereil (t) is the current in the coil (inductor).
Using the relation (4) for (8bh(= 1) we obtain

I.(s) =s"CU,(s)-Cs"i. (0+), O<a<1 (10)
where | _(s) = [i. (t)] andU_(s) = £[u. (t)] .
Similarly, using the relation (4) for (9b) we obtai
U, (s)=s’LI (s)-Ls"" (0+), 0<B<1 (11)
whereU (s) = £[u, (t)] and | (s)=£[i (t)].
Impedance of the series connection of the resistBn¢he capacityC and inductancé
described by the relations (8b) and (9b)) will béed the operator impedance.
To simplify the considerations we shall assumé tha
1) initial conditions are zerd:; (0+) =0, u (0+)=0,
2) all Laplace transformdJc(s) andlc(s) of the condensators are related by
U.(9= I -(9) (12a)
3) all Laplace transformd,(s) and I._(s) of the coils are related by
U, (s)=s"LI (9) (12b)

First we shall show the essence of the mesh mathtitk following electrical circuit (Fig.
1) with given resistancesR,R,,R,,R,,R,,R,, capacitancesC,,C,,C,, inductances

L,L,L, and source voltages,e, g, e,. Let I'(s),l,(s),l,(s) be the Laplace
transforms of the mesh curreritgt),i", (t),i', (t)
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R

Fig. 1. Electrical circuit.

Using the Kirchhoff's voltage law and the relatio(l2) for the circuit we obtain the
equations

a(s)+E4(s)=(R+s‘ll)l'l(s)+Fﬁ[l;(s)—l;(s)]+[&+%][l;(s)—l;(s)]
= Z,(IN' (9~ Zu@)1 (9~ 291", (9
IR . o
EO-EO=R 4 ORI 1L G+ RILO -1, 0) 5
= _221(S)| I1 (S) + Zzz(s)l Iz (S) - Zzs(s)l I3 (S)

E(9=(R +5L, +£)| s (S)+{R - J[' S =1L O+ (R+SL)I (5) =1, (9)]

s'C,
= _Z31(S)I B (8- Z32(S)I P (9+ Z33(S)I B S

where E,(s) = £[e(1)] , k= 1,2,4,6:Z,(9) =R +R +R, + 'L, + 1C :
S 3

1 1
le(S) = Zz1(s) = R4 , le(s) = Z31(S) = Rs + a ) ZZZ(S) = Rz + R4 + Rs + Sﬂl—s + a )
S C3 S Cz

1
sC,

1

ZZ3(S) = Z32(S) = RS + SELS’ Z33(S) = R3 + RS + RB + Sﬁ(LS + LG) + Sac +

3
Equations (13) can be written in the form

E'(s)=2(s)l'(s) (14a)

where
El(s) + EA(S) Zn(s) - le(s) - le(s) I I1 (s
E(9)=|E()~E(9) |, Z(5)=|=Z,(5) Zy(s) —Zu(s)| I'(s)=|1"(s)| (14D)
Ee(s) - Z31(S) - Zsz(s) Z33(S) I I3 (S)

Taking into account thadetZ(s) # 0 we may find from the equation (14a) the vectds)
1'(s) =Z"(s)E'(9) (15)
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Applying the inverse Laplace transfornc{) to 1'(s) we may find the mesh currents
i, (t),i",(t),i", (t) , and next from the relations

L) =i, (1), L0 =i, 0, i, =i,0 -1, ),

i, @) =i @) =i @), i, @) =i, @) =i @), i,t) =i, )
branch currents, (t), k= 1,...,6 in transient state.

Remark. Choosing as the state variables (the componerttseoftate vectax(t)) voltages
across the condensators and currents in the weilsay write for the circuit (Fig. 1) the
state equation (5), where the source voltagesh&redmponents ai(t) and entries of the
matricesA, B depend on the resistances, capacitances and amdest of the circuit. Using
the solution (6) of the equation (5) we may find thansient values of the voltages across
the condensators and of the currents in coils@ttrcuit.

In general case of-mesh linear electrical circuit we obtain the eguafl4a), where

(16)

Ell () Z11(S) - le (s .. - Zln (s I I1 (s
e ] NN S
E. (9 =Z,(8) —Z,(9 ... Z,(9 1.(s)

E' (), k=1,2,...nis the algebraic sum of the Laplace transformsanirces voltages in
the k-th mesh (with + we take the transform if its dtfeo is consistent with the direction
of the mesh current and with — if the directioropposite).Z, (s) , k= 1,2,...n is the sum
of the operator impedances of all branches belgnginthek-th mesh andz,(s), k, | =
1,2,...nis the operator impedance of the branch belongirthek-th mesh and-th mesh.
I'.(s),k=1,2,...nis the Laplace transform of thkeh mesh current.

Knowing E'(s) andZ(s) from the equation (15) we may find(s) and using the inverse
Laplace transform we may find the mesh curreitd), k = 1,2,...n and next the branch
currents of the circuit.

4. RECIPROCITY THEOREM

Consider a fractional linear circuit composed dfistances, capacitances ,inductances
and one source voltaggt) in transient state. We choose the linearly inddpat meshes in
such way that the source voltage belongs toktttemesh and leit) be the current in a
branch belonging only to tHeh mesh (Fig. 2a).

a)
Passive
e(t) ik) circuit i‘) y i
R,L,C
b)
_ Passive
it) ikD circuit il) e(t)
R,L,C

Fig. 2. Electrical circuits.
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Applying to the circuit the mesh method from (1% ebtain

C(9)

I,(s) =—"——E(s) for k,1=1,2,... 18

/() detZ(9 (s) n (18)
where |, (s) = £[i, (t)] , E(s) =£[e(t)], C,(S) =(-D“'M, (s), M, (s) is the minor obtained
from the matrixZ(s) by deleting itd-th row and it&k-th column.
Now we interchange the places of the source volé&tyeand the observation point of the
currenti(t) (Fig. 2b). Applying to the circuit from Fig. 2lh@é mesh method from (15) we
obtain

- G
()= detz(s) E(s) 91

From symmetry of the matrixZ(s) it follows that C (s)=C,(s) and this implies
I.(s)=1,(s) . Therefore, the following reciprocity theorem Heen proved.

Theorem 2The ratio of a single source voltage at one painhiserved branch current at
another one in any linear fractional electricalcgit in transient state is invariant with
respect to an interchange of the points of exoitaéind observation.

Example 1.Consider a linear fractional electrical circuitig=3) with given resistances
R.R,,R,, capacity C, inductande and source voltage(t). The source voltage belongs to

the first mesh anit) is the current equal to the second mesh cuiifgft) .
a)

M)
RW C Rz
e(t)(‘D ig(t)) §R3 IZ(UD it
i
b)
M) A
RW C Rz
04 u(t)) §Ra i;(t)) OL
i

Fig. 3. Electrical circuit with single source voge.

Equation (14) for the circuit has the form
1 .
[E(()s)}: R*+*R+=c -R, [:Il(s)} (20)
- R3 Rz + R3 +s°L 2 (S)

From (20) we have
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o= SRC
I, (s) = A(S) E(s) (21)
where
A(s) =s'S’LC(R +R) +s"C[R(R +R) +RR]+s’L+R, +R, (22)
Similarly, equation (14) for the circuit from Figb has the form
1 '
{ 0 }: R+R+— -R [I.l(S)} 23)
E(s) R R+R+sLE0O
From (20) we have
.. _S'RC
I',(s) = A9 E(s) (24)

From comparison of (21) and (22) we obtain(s) =1",(s) .

5. EQUIVALENT VOLTAGE SOURCE THEOREM AND EQUIVALENT
CURRENT SOURCE THEOREM

Consider fractional linear electrical circuit conspd of resistances, capacitances,
inductances and source voltages. The circuit cadivided in active part A and passive
part P. Both parties are connected in the way stmwhig. 4a.

a)

a
Active part Passive part
A P
b
b)
a
elt) Z,(s) Passive part
P
b
c)
S
Active part Passive part
A e®) e P
b
d)
_@3_
Active part Passive part
A e(t) P
b

Fig. 4. Connection of active part A and passivet fFar

After disconnecting the passive part P:
1) we register the voltags,(t) between the points a-b in transient state,

2) we register the curreni(t) in transient state when the points a-b are shotiitj
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3) we calculate the equivalent operator impeda#gés) of the active part A when

all source voltages are zero.
We shall show that the active part A is equivalentideal) voltage source(t) = u,(t)

connected in series with the operator impeda¢s) .To do this we switch on two voltage

sources with opposite directioe) (Fig. 4c¢). By assumption the fractional circutlinear
and we may use the superposition principle. Cusrantd voltages in transient state in the
circuit shown on Fig. 4c are the sum of the suéatlrrents and voltages in the circuits
shown on Fig. 4d and Fig. 4b.The voltage betweenpthints a-b on Fig. 4d is equal zero
and all currents and voltages in the passive pameRequal zero. The voltages and current
in part P shown on Fig. 4a and Fig. 4b are the sarhes completes the proof of the
following theorem.

Theorem 3Active part of any fractional linear system inrtsgent state is equivalent to
voltage source(t) connected in series with the operator impedafge) (Fig. 4b).

Example 2The electrical circuit shown on Fig. 5 we divideo the active part A and the

passive part P .
a)

| a
H
Ri C R,
e(t) R,
L
Part A b Part P

Part P

Fig. 5. Connection of the active part A and thegpas part P.

The active part is equivalent to the voltage souegg) connected in series with the
operator impedancé, (s), where g,(t) is equal to the voltage on the resistaRgavhen
the passive part P is disconnected and the openap@dance is
1
RR+ o)
Z,(9=——35 (25)
+R +

R+R+
Using the well-known equivalence of the voltagerseuand current source we obtain the
following theorem.
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Theorem 4 Active part of any fractional linear system inrtsgent state is equivalent to
current sourcé,(t) connected in parallel with the operator impeda#gés) (Fig. 6)

» a
iz(t) Ijzw(s) Passive part
P
b

Fig. 6. Equivalent current source

wherei,(t) is the current when the points a-b are shorudind it is related to the source
voltage e,(t) by the equality

£[i.0)] {L(‘g] (26)

Theorem 4 can be also proved in a similar way agtreorem 3.

6. CONCLUDING REMARKS

Using the Caputo definition of the fractional dative-integral and the Kirchhoff's
laws it has been shown that the mesh method caatsbeapplied to analysis of fractional
linear circuits composed of resistances, capaamnmnductances and voltage (current)
sources in transient state. In a similar way it banshown that node method can be also
applied to analysis of the fractional linear eleelr circuits. Using the mesh method it has
been shown that the reciprocity theorem is alsadvédr fractional linear circuits in
transient state. The classical Thevenin theoremNartbn theorem have been extended for
the fractional linear electrical circuits in tramsi state. These considerations can be
extended for fractional linear electrical circuitgh nonzero initial conditions.

This work was supported by Ministry of Science &figher Education in Poland under
work No NN514 1939 33.
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