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APPLICATION OF THE THEORY OF HYPERELASTIC-PLASTIC M ATERIALS 

IN THE TEST OF STATIC STRETCHING OF THE ROD WITH CI RCULAR 
CROSSECTION  

 
 

 The issue of necking in the stretched elements is widely debated in the literature.  
In these works the results of experimental studies, analytical solutions and the FEM 
simulations in the framework of the theory of large deformation theory can be found, cf. 
e.g.[6]. Here the effective solutions of boundary value problems are obtained with 
application of finite element method (FEM) and ABQAQUS software. It is worth noting that 
reasonable modeling of rod stretching experiment in frame of the small deformation theory 
is not possible. The main goal of this study is to compare the FEM solutions obtained for 
two different large deformation theories for elastic-plastic materials, i.e. the theoretical 
formulation proposed in [5] and the theory implemented in ABAQUS/Standard[1]. 

 
 

 ZASTOSOWANIE TEORII HIPERSPR ĘśYSTO-PLASTYCZNO ŚCI  
W STATYCZNEJ PRÓBIE ROZCI ĄGANIA PRĘTA O PRZEKROJU KOŁOWYM  

 
Zagadnienie powstawania przewęŜenia zwanego szyjką w elementach rozciąganych jest 

szeroko dyskutowane w literaturze dotyczącej teorii plastyczności. W pracach tych 
zamieszczono wyniki badań doświadczalnych, rozwiązania analityczne oraz symulacje 
MES, por. np.[6]. W tej pracy do rozwiązania zagadnienia brzegowego efektywnie stosuje 
się metodę elementów skończonych (MES) i program ABAQUS. Warto podkreślić juŜ na 
wstępie, Ŝe racjonalne modelowanie tego eksperymentu w ramach teorii spręŜysto-
plastyczności małych deformacji nie jest moŜliwe. Celem tej pracy jest porównanie 
rozwiązań MES zadania rozciągania pręta przy zastosowaniu dwóch róŜnych teorii 
spręŜysto-plastyczności dla duŜych deformacji, tzn. sformułowania teoretycznego 
zaproponowanego w [5] oraz teorii zaprogramowanej w systemie ABAQUS/Standard[1]. 

 
 

1. INTRODUCTION 
The issue of necking in the stretched elements is widely debated in the literature, see eg 

[4], [5]. In these works the results of experimental studies, analytical solutions and the FEM 
simulations in the framework of the theory of large deformation theory can be found. Also 
in the monograph of Simo and Hughes [6] the results of experimental and numerical tests 
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with application of the theory of elastic-plastic large deformation materials are presented. 
These tests are carried out taking into account the influence of the strain rate or as the static 
test. For effective solution of the boundary value problem or initial boundary value problem 
the finite element method (FEM) is applied. It is worth noting that the rational modeling of 
this experiment in the theory of small elastic-plastic deformation is not possible. 

The purpose of this study is to compare the solutions of the task of rod stretching using 
two different formulations of theory for large deformation  for elastic-plastic materials, i.e. 
the results obtained for large deformation theory with hyperelastic-plastic model (cf. [5]) 
and the theory for relatively large deformation available in ABAQUS / Standard [1]. The 
hyperelastic-plastic constitutive model of metals presented below is incorporated in 
ABAQUS/ Standard, by UMAT Subroutine written in FORTRAN language. 

Numerical solutions of static task of rod stretching are carried out for different FEM 
discretizations of the body. In the static task the assumption of axial symmetry and the 
symmetry with respect to the plane perpendicular to the axis of the bar and dividing it into 
two equal parts are incorporated. However, such assumptions may cause a priori, that we 
are not able to find some solutions that are possible within the theory of large deformation, 
see the comments in the monograph [2]. Assumption of deformation symmetry in the static 
task are allowed and can be interpreted as the lack of imperfection shape and material 
inhomogeneities. 

 
2. CONSTITUTIVE MODEL OF HYPERELASTIC-PLASTIC MATER IAL 

Constitutive model was formulated in frame of large deformation theory with 
consequent multiplicative decomposition of gradient of deformation tensor into two parts: 
an elastic  and plastic one denoted respectively as eF  and pF . Additionally each of 

deformation tensors was decomposed with application of polar decomposition theorem onto 
part describing stretching (right and left stretch tensor denoted respectively as U  and V ) 
and part connected with the rotation of the material point (R ). It was assumed that plastic 
deformation has no volumetric change, what is a reasonable assumption in case of metallic 
materials and gives 1det...detdet ==== ppp VCF . The elastic properties of materials are 

described with application of hyperelastic model of the MCMH type, cf. [2,3]. In this 
model the stored energy function, which is a potential for the stress tensor can be written in 
the following form: 

( ) ( )0
1 3

2 e eW I J
µ α= − + )

 ,                                                  (1) 

 
where:  0µ - shear modulus in reference configuration, 

1eI - an invariant equal to 2
3

2

1 trU−= ee JI , 

eJ - an invariant equal to eeJ Fdet= , 

( )eJα) - describes the volumetric changes. 

 
The function ( )eJα)  can be expressed in the following manner: 
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 .                                               (2)  

 
where:  0K - volumetric stiffness modulus in reference configuration. 

 
The plastic properties are taken into account by postulating associative plasticity with 

yield condition analogical to the well-known Huber-Mises condition with isotropic 
hardening: 

( ) ( )2
, 0

3df kα α= − =τ τ ,                                                     (3)  

 
where:  τ - Kirchhoff stress tensor, 

dτ - the norm of deviatoric part of Kirchhoff stress tensor, 

( )k α - hardening function. 

 
The hardening function in (3) can be expressed in the following manner: 
 

( ) ( )( )αδασα −
∞ −−++= eAAAk Y 10 .                                          (4)  

 
where:  Yσ - yield stress in the uniaxial test, 

δ,,, 0 ∞AAA - hardening parameters. 

 
In (3) dτ  is a deviatoric part of the Kirchhoff stress tensor, and function ( )αk , 

describes an isotropic nonlinear strain hardening behavior calibrated from simple stretching 

test. In the variable α  the history of the plastic deformation (via pC& ) can  be taken into 

account. 
 

3.  A COMPARISON OF  FEM SIMULATION RESULTS FOR TWO  DIFFERENT 
FORMULATIONS OF PLASTICITY WITH EXPERIMENTAL DATA 
As it was mentioned in the introduction, the static rod stretching test was analyzed in [5] 

and in the monograph [6]. Here the same geometrical and material data are taken into 
account, in order to compare  obtained results. So, it was assumed that the rod with circular 
cross-section  and radius ]mm[413.6=r  is ]mm[334.53=l  long. 

The initial elastic properties are characterized by shear modulus 0µ =80.1938 [ ]GPa  

and volumetric stiffness modulus 0K =164.206[ ]GPa , what rewritten into Young modulus 

and Poisson ratio gives 9.206=E [ ]GPa  and 29.0=ν . In (4) the following data are 

describing the strain hardening process: A =0.12924[ ]GPa , ∞A =0.715[ ]GPa , 

0A =0.45[ ]GPa , Yσ =0.45[ ]GPa  and δ =16.93, cf. fig. 1.  
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The stretching of the rod was carried 
out with application of displacement 
boundary conditions. At the edge DC 
the displacement in y direction is 
blocked, while at the edge AB the 
displacement in the x direction is 
blocked and displacement in y direction 
is set to 7[mm]. At the edge AD the 
boundary conditions result from axial 
symmetry, and for BC edge the zero 
stress boundary conditions are assumed. 

The task was solved for constitutive 
model presented in paragraph 2 and 
incorporated into the ABAQUS/ 
Standard, via UMAT Subroutine written 
in FORTRAN language.  

The same task was solved with 
application of plasticity with additive 
decomposition of logarithmic strain 
tensor. In that formulation the yield 
condition is written in terms of 
deviatoric part of  Cauchy stress tensor, 
and the nonlinear isotropic hardening 
was modeled by piecewise-linear 
function. So from theoretical point of 
view that constitutive model is 
substantially different from the 
hyperelastic-plastic model. Nonetheless 

the results of the analysis should be consistent, because of the fact that elastic deformations 
and local material particle rotation in analyzed task were relatively small. Furthermore the 
differences between components of the Cauchy and Kirchhoff stress tensors shouldn’t be 
significantly different because under assumption about incompressibility of the plastic part 
of deformation the relationship hold στ eJ= . Additionally we know that initial shear 

modulus is about two orders of magnitude higher than shear yield, what is typical for 
metals. 

 

 
Fig.1.Geometry of the rod, symmetry 
assumptions and FEM model  
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The properties of isotropic 
and nonlinear plastic hardening 
were assumed according to the 
graph presented in fig.2 as an 
linear approximation in a 
hundred equal intervals. It means 
that there is the following 
relationship ( ) ( )ppk εσα ≅ , 

where ( )
0

2
d

3

t

p pε η η= ∫ e&  

(equivalent plastic strain ). 
The FEM mesh is the same 

for both tasks and consists of 
10x50=500 CAX4 type elements 
with linear shape functions. The 

mesh has higher density near the symmetry line, cf. fig.1. The task was solved with use of 
automatic step division procedure and 130 iterations were needed to obtain solution with 
assumed accuracy. 

 

 

 

 

Fig.3. Deformed mesh 
10x50 elements 

. Ratio of current radius in DC section and initial radius as a 
function of oll∆ - results comparison, cf. also[6] 

 
The results of the rod deformation are presented in fig.3. In turn in fig. 4 the comparison 

of FEM results for both formulations and experimental data are shown. In fig.3, 6 and 7 the 

 
 

Fig.2. Approximation of function ( ) ( )ppk εσα ≡  with  

linear segments 
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results are presented at the end of active process (without an elastic unloading process). In 
fig.5 the contour graph of equivalent Mises stresses is presented at the end of loading step 
(a) and after unloading (b). Differences between the results obtained by two different 
formulations of elasto-plasticity are, from the standpoint of conformity with experimental 
data irrelevant. Just as in the work [5] we have checked the influence of the number of 
mesh elements on the results showing that it is negligible. The same tasks were solved with 
the denser mesh of 20x100= 2000 elements. Obtained results are practically identical with 
an accuracy of at least two significant digits. 

 
a) b) 

  
 
Fig.5. Example of FEM results (ABAQUS)- contour graphs: a) equivalent Mises stress at 

the end of loading step, b) equivalent Mises stress after unloading  
 
Exemplary results are presented as contour plots in Figure 5-7. Significant deformations 
and concentration of plastic strain occurs naturally in the neck, see fig.3 and 6. The fields of 
displacement norm, stress and strain components are highly heterogeneous on the length of 
the sample as well as on its diameter. The highest effective stresses are located in the neck 
of the sample and are about 0.96 [GPa] and decrease uniformly in the direction of the upper 
edge, see fig.5. The equivalent plastic strain outside the neck are about four orders of 
magnitude smaller, than in the neck, cf. fig.6a. The largest plastic deformation occur in the 
neck and along  the axis of the rod, and in the total strain, crucial contribution have the 
plastic strain. It may be noted that extreme elastic strain are of at least three orders of 
magnitude smaller than plastic strains. The distribution of elastic strain on the height and 
radius of the sample is more heterogeneous than that for plastic strain. It is easy to check 
that in the plastic range the assumption of incompressibility is met with a high accuracy. 
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a) b) 

  
Fig.6. Example of FEM results (ABAQUS)- contour graphs: a) equivalent plastic strain, b) 

norm of displacement at the end of loading step 
 
a) b) 

  
Fig.7. Example of FEM results (ABAQUS)- contour graphs: a) shearing component of 

elastic strain, b) shearing component of plastic strain at the end of loading step 
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4. CONCLUSIONS 
 
The formulation presented in the work [5] and implemented by author  should be 

regarded as consistent, cf.  [3], while the standard formulation implemented in ABAQUS 
and based on an additive decomposition of logarithmic strain measure can not be used for 
significantly large deformation of the body. The manual [1] state limitation onto the elastic 
part of strain (up to about 5%). Plastic deformation and rotation of particles of the body are 
not at all limited. Based on the elaboration presented in [3], it can be concluded that in the 
case of deformation in which there are significant local rotations of particles of the body, 
part of the deformation gradient describing the rotation should be limited. Another very 
important issue in this implementation is the answer to the question whether the elastic 
behavior of the material model is close to linear. If we are dealing with non-linear elasticity 
that the results will certainly be irrational. Summary calculation example shows, however, 
that in many applications where local rotations are small and the behavior of the material to 
yield is almost linear ABAQUS program with its standard formulation can be reasonably 
used. 
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