LOGITRANS - VII KONFERENCJA NAUKOWO-TECHNICZNA LOGISTYKA, SYSTEMY TRANSPORTOWE, BEZPIECZEŃSTWO W TRANSPORCIE

> Monitorowanie diagnostyczne, model dynamiczny, diagnostyka pojazdowa

Radosław GAD¹

ANALIZA BIPOLARNEGO DYNAMICZNEGO MODELU DIAGNOSTYCZNEGO MONITOROWANIA WYPOSAŻENIA ELEKTRYCZNEGO SAMOCHODU

W referacie przedstawiono bipolarną koncepcję dynamicznych modeli monitorowania diagnostycznego wyposażenia elektrycznego samochodu, (WES), które są opisane w postaci równań różnicowych określających nieliniowe zależności między uszkodzeniami a symptomami WES. Z otrzymanych rezultatów wynika, że takie modele mogą być stosowane do budowy układów monitorowania diagnostycznego WES realnych pojazdów.

SIMULATION ANALYSIS OF BIPOLAR MODELS OF DIAGNOSTIC MONITORING OF CAR'S ELECTRICAL EQUIPMENT

The report presents bipolar models of diagnostics monitoring of car's electrical equipment (WES), that are described in a form of difference equations that define non-linear relations between damages and WES symptoms. The results prove that these models can be applied to construct WES diagnostic monitoring systems for real cars.

1. WSTĘP

Artykuł jest kontynuacją pracy [1]. Wprowadzono nową koncepcję bipolarnych modeli monitorowania dynamicznego wyposażenia elektrycznego samochodu. Monitorowanie diagnostyczne pojazdu może być przeprowadzane różnymi metodami, w tym opartymi na podejściu, symptomowym (rys. 1).

W pracy przedstawiono wyniki analizy symulacyjnej bipolarnego dynamicznego modelu diagnostycznego monitorowania wyposażenia elektrycznego samochodu, w której zastosowano nowatorską koncepcję dynamicznych modeli, opisujących system monitorowania diagnostycznego WES.

¹ Politechnika Świętokrzyska, WE,AiI; Kielce 25-314, Al. Tysiąclecia P. P. 7, tel.: +48 41 34-24-143; faks: +48 41 34-24-143, e-mail: sgad@tu.kielce.pl

Praca została wykonana w ramach projektu badawczego (granta) nr: NN510438136.

Rys.1. Schemat blokowy analizowanego układu.

2. MODEL DYNAMICZNEGO MONITOROWANIA DIAGNOSTYCZNEGO

Model dynamiczny służący do analizy relacji symptom – uszkodzenie [1] został zastąpiony nową koncepcją (1), (2), która przedstawia monitorowanie w następujący sposób:

$$F_{j}(t+1) = f\left(\sum_{i=1}^{36} W_{ij}MS_{i}(t) + F_{j}(t)\right)$$
(1)

$$f(x) = \frac{1 - e^{-\lambda x}}{1 + e^{-\lambda x}}$$
(2)

gdzie: - W_{ij} - elementy macierzy diagnostycznej W (tab. 1);

- F_j uszkodzenia;
- $-MS_i symptomy;$
- F_j(0) wartość początkowa (zadana) j tego uszkodzenia;
- $-t = 0, 1, \dots, T czas$ dyskretny;
- -j = 1,...,32; i=1,...,33;
- $-\lambda > 0.$

W analizowanym przykładzie zastosowano model, zawierający 30 symptomów i 23 uszkodzenia, a ich wzajemne powiązania (współczynniki $W_{i,j}$ z tab. 1) określono na podstawie wiedzy ekspertowej i zestawiono w macierzy współczynników W (tabela 1). W tabeli 1 przedstawiono zbiory S_i – zmierzone sygnały diagnostyczne, oraz ich wpływ na uszkodzenia F_i (dla i=1,...,33; j=1,...,30).

Tab. 1 Macierz współczynników W

																						~ ~	···~P		· ~ .			
F/S	\mathbf{S}_1	\mathbf{S}_2	S_3	\mathbf{S}_4	S_5	S_6	\mathbf{S}_7	\mathbf{S}_{8}	S ₉	S_{10}	S_{11}	S_{12}	S ₁₃	S ₁₄	S ₁₆	S ₁₇	S_{18}	S19	S ₂₀	S_{21}	S ₂₂	S ₂₃	S_{24}	S ₂₆	S ₂₇	S_{31}	S ₃₂	S ₃₃
F ₀	0,2	0,1	0,3	0,2	0,3	0,1	0,2	0,1	0,4	0,1	0,1	0,3	0,1	0,4	0,2	0,1	0,2	0,1	0,3	0,1	0	0	0	0,1	0,1	0,2	0,1	0,2
F ₁	0,2	1	1	0,3	0,2	1	0	0,4	0,6	0,5	0,8	0,4	0,3	0,2	1	1	0,3	0,6	0,2	1	1	1	1	0,1	0	1	1	1
F ₃₀	0,6	1	1	0,8	0,7	0,9	0,5	0,7	0,4	0,6	0,8	0,9	0,5	0,4	0,7	0,8	0,5	0,8	0,6	0,7	0,8	0,5	0,6	0,7	0,9	1	1	1
F ₂	0,3	1	1	0,4	0,5	0,2	1	0	1	1	1	0,4	0,1	0	0,3	0,2	0,6	0,1	0,2	0,4	0,3	0	0,1	0	0	1	1	1
F ₃	0,4	1	1	0,2	0,3	1	0,4	0,6	0,3	0,1	0,5	0,4	0,2	0,1	1	1	0,6	0,4	0,3	0,2	1	1	1	0,4	0,3	1	1	1
F_4	0,7	1	1	0,3	0,1	0,4	0,2	0,5	0,1	0	0,2	0	0,3	0,2	0,5	0,1	0,2	0,2	0,5	0	0,1	0,3	0,1	0,2	0	0,1	0,3	0,1
F ₅	0,5	1	0,7	0,3	0,5	0,2	0,4	0,1	0,5	0,7	0,8	0,5	0,6	0,6	0,4	0,3	0,6	0,8	0,2	0,4	0,1	0,4	0,2	0,1	0	0,4	0,4	0.2
F ₆	0,3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
F ₇	0,1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0,5	0,7	0,3	0,8	1	1	1	1	1	1	1	1
F ₈	0,2	1	1	0,8	0,7	0,5	0,1	0,1	0,2	0	0	0,1	0,3	0,2	0,5	0,3	0,1	0,4	0,2	0,1	1	1	1	0,1	1	1	1	1
F ₉	0,2	1	1	0,2	0,3	0,4	0,1	0,4	0,3	0,2	0,1	0,5	0,2	0,8	0,7	0,5	0	0,2	0,5	0,3	0,2	1	1	0,3	1	1	1	1
F ₁₁	0	1	1	0,3	0,1	0,2	0,1	0,3	0,5	0,2	0,1	0,2	0,3	0,5	0,4	0,3	0,1	0,2	0,3	0,4	0,1	0,5	1	0,4	1	1	1	1
F ₁₂	0,4	1	1	0,1	0,2	1	0,1	0,4	0,2	0,1	0,5	0	0	0,1	1	1	1	1	1	1	1	1	1	0	1	1	1	1
F ₁₃	0,1	1	1	0,8	0,6	1	0,1	0,2	0,1	0,4	0,2	0,1	0,1	0,1	1	1	0,8	1	1	1	1	1	1	0,2	1	1	1	1
F ₁₄	0,3	1	1	0,5	0,3	1	0,2	0,4	0,2	0,1	0	0,3	0,2	0	1	1	0,1	1	1	1	1	1	1	0	1	1	1	1
F15	0	1	1	0,4	0,2	1	0,1	0,5	0,3	0	0,1	0,3	0,2	0,1	1	1	0,3	0,1	1	1	1	1	1	0,1	1	1	1	1
F ₁₆	0,2	1	1	0,1	0,3	1	0	0,2	0,4	0,1	0,2	0	0	0,1	1	1	0,1	0	0	1	1	1	1	0	1	1	1	1
F17	0,5	1	1	0,2	0,3	0,1	0	0,5	0,2	0,2	1	1	0,2	0,6	0,1	0,2	0,1	0,5	0,6	0,2	0,3	0,1	0	0,1	1	1	1	1
F ₁₈	0,1	1	1	0,1	0,5	0,2	0,1	0,1	0,3	0,5	0,6	0,8	0,1	0,1	0	0,1	0,1	0	0,3	0,1	0,1	0,3	0,5	0,1	1	1	1	1
F19	0,2	1	1	0	0	0,1	0,1	0,2	0,4	0,5	0,2	0,5	0,5	0,2	1	1	0,4	0,1	0,3	0,1	0	0,1	0,2	0,5	1	1	1	1
F ₂₀	0,4	1	1	0,1	0,3	0,1	0,1	0,7	0,3	0,5	0,2	0,8	0,3	0,2	0,6	1	0,1	0,2	0,1	0	0,1	0,3	0,1	0,1	1	1	1	1
F ₃₂	0	1	1	0,2	0	0,8	0	0,9	0,6	0,3	0,2	1	1	0,2	0	0,7	0,2	0,1	0,1	0,9	0,1	0,1	0,2	0,1	1	1	1	1
F ₂₁	0,2	0,3	0,1	0,2	0,1	0,3	0,1	1	0,7	0,1	0,1	0,2	0	0,2	0	0,1	0,2	0	0,1	0,1	0	0,2	0,1	0,8	0,9	0	0,1	0,3

Równania (1) i (2) przedstawiają bipolarny model, na podstawie którego przeprowadzono w pracy analizę symulacyjną.

Wyniki analizy uzyskano w drodze realizacji procesu, składającego się z następujących etapów:

- sprowadzenie wartości rzeczywistych sygnałów do postaci znormalizowanej w granicach [0, 1];
- przeprowadzenie analizy symulacyjnej WES w zależności pomiędzy symptomami i uszkodzeniami w postaci równań różnicowych (1) i (2).

Na rysunku 2.1 przedstawiono ogólny schemat blokowy wyposażenia współczesnego elektrycznego silnika samochodowego.

Rys. 2. Ogólny schemat blokowy wyposażenia elektrycznego silnika samochodowego z zaznaczonymi symptomami pomiarowymi.

Osprzęt silnika spalinowego składa się z następujących układów [2]:

- o zasilania w energię elektryczną: akumulator, alternator, regulator napięcia;
- zasilania w paliwo : przekaźnik zasilania pompy paliwowej, pompa paliwowa, wtryskiwacze;
- zapłonowy: akumulator, wyłącznik zapłonu, elektroniczny moduł sterujący pracą silnika, cewka zapłonowa, świece zapłonowe, przewody niskiego napięcia, przewody wysokiego napięcia;
- rozruchu: akumulator, wyłącznik zapłonu, wyłącznik elektromagnetyczny, mechanizm sprzęgający;
- o inne elementy sterujące: czujnik położenia i prędkości wału korbowego; immobilizer, czujnik spalania detonacyjnego, czujnik temperatury powietrza, czujnik poziomu paliwa, czujnik położenia przepustnicy;– czujnik temperatury silnika, wyłącznik wentylatora chłodnicy, sonda lambda, czujnik ciśnienia w kolektorze ssącym, sonda lambda, czujnik ciśnienia w kolektorze ssącym, czujnik ciśnienia oleju.

W pracy dla analizy symulacyjnej wybrano obwód zasilania energią elektryczną, a konkretnie zależność wpływu zmiany symptomów MS_4 i MS_5 na uszkodzenie stacyjki (F_{12}) oraz uszkodzenie przewodu stacyjka – rozrusznik (F_{13}).

3. WYBRANE WYNIKI BADAŃ

Celem badań symulacyjnych było przedstawienie możliwości monitorowania diagnostycznego WES sygnału ze stacyjki pojazdu S₄ (symptomem MS₄) i sygnału zapłonowego ze stacyjki pojazdu w czasie rozruchu S₅ (symptomem MS₅) oraz ich wpływ na uszkodzenia: stacyjki i przewodu stacyjka – rozrusznik na podstawie wybranego modelu diagnostycznego (3) – (4) (szczególny przypadek (1) – (2)) zgodnie z następującymi założeniami:

$$F_{12}(t+1) = f(w_{4,12} \cdot MS_4(t) + w_{5,12} \cdot MS_5(t) + F_{12}(t))$$
(3)

$$F_{13}(t+1) = f(w_{4,13} \cdot MS_4(t) + w_{5,13} \cdot MS_5(t) + F_{13}(t))$$
(4)

$$\begin{split} \text{dla:} & -\text{MS}_i \in [0;0,6]; \ F_j \in [0;0,6] - \text{wskaźniki poprawnej pracy;} \\ & -\text{MS}_i \in (0,6;0,9]; \ F_j \in (0,6;0,9] - \text{wskaźniki niepoprawnej pracy;} \\ & -\text{MS}_i = 1; \ F_j = 1 - \text{uszkodzenie;} \\ & -\text{w}_{4,12} = 0,1; \\ & -\text{w}_{4,13} = 0,8; \\ & -\text{w}_{5,12} = 0,2; \\ & -\text{w}_{5,13} = 0,6; \\ & -\text{i} = 4, 5; \ j = 12, 13. \end{split}$$

Na rys. 3 oraz rys. 4 przedstawiono przebiegi czasowe sygnałów diagnostycznych $S_4,\,S_5$ oraz symptomy $MS_4\,i\,MS_5.$

Rys.3. Przebiegi rzeczywiste sygnałów diagnostycznych (symptomów): S₄ – sygnał ze stacyjki pojazdu; S₅ – sygnał zapłonowy ze stacyjki pojazdu w czasie rozruchu

Rys.4. Przebiegi symptomów po standaryzacji MS_4 – sygnał ze stacyjki pojazdu po standaryzacji oraz MS_5 – sygnał zapłonowy ze stacyjki pojazdu po standaryzacji

Na rys. 5 – 7 przedstawiono przebiegi uszkodzeń F_{12} oraz F_{13} dla modeli dynamicznego monitorowania diagnostycznego (3) – (4) z liniowymi, bipolarnymi oraz sigmoidalnymi funkcjami f(x).

Rys.5. Zmiany czasowe uszkodzeń wybranych elementów WES: F_{12} – uszkodzenie stacyjki; F_{13} – uszkodzenie przewodu stacyjka – rozrusznik (f(x)=x)

Rys.6. Zmiany czasowe uszkodzeń wybranych elementów WES: F_{12} – *uszkodzenie stacyjki;* F_{13} – *uszkodzenie przewodu stacyjka* – *rozrusznik (* $f(x) = (1-e^{-\lambda x})/(1+e^{-\lambda x})$

Rys.7. Zmiany czasowe uszkodzeń wybranych elementów WES: F_{12} – *uszkodzenie stacyjki;* F_{13} – *uszkodzenie przewodu stacyjka* – *rozrusznik (* $f(x) = 1/(1 + e^{-\lambda x}))$

Z zaprezentowanych wykresów F_{12} i F_{13} wynika, że z liniową funkcją f(x) przebiegi uszkodzeń przekraczają granice [0, 1] (co nie jest możliwe przy diagnozowaniu), a wprowadzenie bipolarnej funkcji w modelu (1) – (2) pozwala na dokładniejszą analizę diagnostycznego monitorowania analizowanego obiektu (rys. 1). Stanowi to podstawę do opracowania odpowiedniej procedury diagnostycznego monitorowania, poprawiającej rozróżnialność uszkodzeń w wybranych chwilach czasowych.

4. WNIOSKI

W artykule przedstawiono wyniki analizy porównawczej liniowego, sigmoidalnego i bipolarnego modelu monitorowania diagnostycznego WES, z których wynika, że zastosowanie bipolarnego modelu (1) – (2) pozwoli w pewnym stopniu dokładniej zautomatyzować proces diagnozowania i lokalizacji uszkodzeń.

5. BIBLIOGRAFIA

- [1] Jastriebow A., Gad R., Analiza symulacyjna dynamicznych modeli monitorowania diagnostycznego wyposażenia elektrycznego samochodu. Logistyka nr 6/2009, Poznań 2009 (wersja elektroniczna).
- [2] Gad R. Synteza i analiza pomiarowych sygnałów symptomowych dla diagnostyki wyposażenia eklektycznego pojazdów. Praca magisterska, Politechnika Świętokrzyska, Kielce 2005.