

Logistyka - nauka

Logistyka 2/2012
559

Katarzyna GDOWSKA *, Roger KSIĄŻEK *

THE STRUCTURE OF THE GENETIC ALGORITHM OF LOT-SIZIN G
AND SCHEDULING PROBLEM FORMULATED AS CAPACITATED

LOT SIZING PROBLEM

Abstract

In this paper the structure of the genetic algorithm utilised for solving an integer programming
model of lot-sizing and scheduling problem is introduced. The genetic algorithm presented in the
paper was employed for solving a lot-sizing and scheduling problem formulated as Capacitated
Lot Sizing Problem. The method of chromosome encoding, utilised crossover operators and
mutation operators employed in this genetic algorithm are presented and explained, moreover,
implemented modifications are indicated.

Keywords: genetic algorithm, CLSP, lot-sizing and scheduling, integer programming

1. INTRODUCTION

The objective of the set of lot-sizing and scheduling problems is to determine minimal

costs as their solution. These costs are connected to inventoriable costs (high inventory level,
high costs) and costs of lot organising (small-size lots, frequent starts, high costs). In existing
formulations of the problems of this type a solution is being searched in the space between
these contradictory goals.
A list of selected works where lot-sizing and scheduling problem is presented is to be found,
amongst others, in following works: (Karimi et al., 2003) [5], (Quadt, Kuhn, 2008) [9].
The mathematical model for Capacitated Lot Sizing Problem (CLSP) is considered to be the
very first and fundamental formulation of lot-sizing and scheduling problem. The most
frequent situation of CLPS utilisation is a problem with long planning horizons. In such a
problem changeover costs and changeover time are charged in any case when a machine’s
status is ready-to-manufacture. The set of parameters and variables of the CLSP formulation
is to be found in Table 1.
A PLCM for CLSP may be formulated according to mathematical description presented in
Table 2.

2. GENETIC ALGORITHM

In the paper (Książek, 2011) [7] results of a computational experiment are presented;

the experiment consisted of solving a particular problem for the same set of data at first with
an implemented genetic algorithm and then solving the PLCM formulation of the problem
with GLPK solver (GNU Linear Programming Kit). The genetic algorithm was implemented
circuit the language JAVA SE 6. On the other hand, GLPK is a free programme kit for
solving integer-programming models.

* AGH University of Science and Technology, Faculty of Management, Department of Operation Research and
Information Technology

Logistyka −−−− nauka

Logistyka 2/2012
560

Table 1. Parameters and variables of CLSP formulation

T = {1,…,T} − Set of periods, where T is the number of periods
N = {1,…,N} − Set of products, where N is the number of products
Ct − Manufacturing capacity, the length of period t

STj ≤ Ct − Changeover time to product j
SCj − Changeover cost to product j

pj − Unit manufacturing time for product j
hj − Unit inventoriable cost for product j
djt − Demand for product j in period t
xjt − Production of product j in period t
yjt = 1 − If in period t a machine is ready to manufacture product j

 0 − others
I jt − Inventory of product j in the end of period t

Table 2. Mathematical model for CLSP

∑∑
∈ ∈

+
Tt Nj

jtjjtjt ySCIh)(min (1)

jtjttj dxI −+−1, � ��� tϵT, jϵN (2)

jtjjtj ySTxp + � ����� tϵT, jϵN (3)

∑
∈

+
Nj

jtjjtj ySTxp)(� �� tϵT (4)

	�� , ��� � 0 tϵT, jϵN (5)
��� ∈ 0,1� tϵT, jϵN (6)

Computational experiments revealed that utilisation of the genetic algorithm for lot-

sizing and scheduling problems seems to be reasonable when it comes to huge problems
where finding a solution with integer programming methods is extremely time consuming. It
is possible that a properly constructed and adjusted genetic algorithm may be efficient in
finding out far better results than the ones achieved with integer programming methods; as far
as the results received in the same amount of time are concerned.

THE ALGORITHM

At the beginning a feasible solution for a given CLSP problem is determined with a
simple algorithm of filling up the production of xjt connected to demand for the product djt,
when moving in the planning horizon from the last planning period towards the beginning
period. The condition (4) is taken into consideration and it guarantees that the total loading
coming out of total production in period t will not exceed the limit for this period Ct.

Subsequently, an initial population of chromosomes is constructed based on the found
beginning solution. Each chromosome provides information on the volume of production xjt,
so that a single chromosome is a particular feasible solution of CLSP problem.

Afterwards the initial population is subjected to following operations: selection,
crossover and mutation. Exclusively during crossover and mutation operations it is allowed to
keep within chromosomes an unfeasible solution which breaking conditions of the model.

At the last stage of the full cycle a population’s life the chromosomes are repaired in
order to eliminate solutions which do not fulfil conditions of the model. In order to repair
chromosomes a chromosome fitness function and comparison function are utilised. The latter

Logistyka - nauka

Logistyka 2/2012
561

improve the solution contained in a chromosome with respect to the objective function’s
value. For this purpose three functions improving a chromosome which does not satisfy
expectations and additional two functions improving a chromosome with regard to the
objective function are utilised.

REPRESENTATION

In CLSP model three variables (Table 1) are to be indicated and the outcome of the
model depends on them. Moreover, the variables are connected with each other by
mathematical relations (Table 2) that cause each variable determine other variables’ values.

When a problem has its feasible solution, values of one variable predominate over
values of the other two variables. The chromosome representing the solution contains
information about variable xjt, i.e. production of product j in period t. Other variables I jt and yjt
are computed basing on fixed values of variable xjt. Each chromosomes chn contains the string
of numbers:

)}(),...,(),...,)((),(),...,(),{(,,11,11,1,11,11,1 TNTjtjjTtn xxxxxxxch +++++= (7)

Each value of variable xjt is written inside the chromosome with a binary number. It
result in obtaining a chromosome, which contains the string of two values “1” and “0”. The
number of bytes b that are necessary to encode the value of a single variable of production
volume xjt was estimated basing on the number of bytes that are necessary to encode maximal
value of manufacturing capacity in the particular period Ct.

CROSSOVER OPERATOR AND MUTATION OPERATOR

A standard one-point crossover operator [2] was utilised in the structure of the genetic
algorithm employed for this problem. Utilisation of k-point crossover operator [2] for this
genetic algorithm was taken into consideration at initial stages of constructing this algorithm.
However, this operator did not have any significant contribution to improvement of the
received results. Therefore less complicated, 1-point crossover operator was chosen.
Crossover operation conducted according to this method requires fulfilling of the procedure
presented in the Scheme 1.

Scheme 1. Procedure of chromosome crossover operation, (Gwiazda, 2007) [2].

1. Select a pair of parent chromosomes A(t) and B(t) from the set of parents,
2. Create a pair of child chromosomes C(t+1) and D(t+1) in the following way:
3. Select randomly a crossover point cp ∊ {1, …, n-1},
4. for i = 1 to cp do
5. ci

(t+1) = ai
t

6. di
(t+1) = bi

t
7. end do
8. for i = cp + 1 to n do
9. ci

(t+1) = bi
t

10. di
(t+1) = ai

t
11. end do

The mutation operation is conducted with a standard mutation operator [3]. Particular

values of the variable xjt are selected according to the probability of mutation then they are
replaced with random values which can range from 0 till the maximal number of products that

Logistyka −−−− nauka

Logistyka 2/2012
562

we are able to manufacture in this period. The mutated value of xjt and the rest of planned for
the period t production of other products are not included.

FUNCTIONS UTILISED FOR IMPROVING A CHROMOSOME WHICH DOES NOT
SATISFY EXPECTATIONS

Functions of this group guarantee that a chromosome which they were performed over
will contain a solution feasible with regard to conditions of CLSP for planning and lot-sizing
problem.

The first function for improving a chromosome which does not satisfy condition
constraints of the problem is a function that eliminates production C+

t exceeding
manufacturing capacity Ct for period t:

≤

>−
=

∑

∑ ∑

∈

∈ ∈+

Ni
ti

Ni Ni
titi

t
Cx

CxCx

C
0

 (8)

For each period t a product j is randomised, afterwards value of production xjt is set to be
equal 0. Subsequent products j are being drawn until C+

t = 0, so that the load does not exceed
the manufacturing capacity Ct in a selected period t. Certainly, the utilised function may
result in the fact that in some periods t demand will not be satisfied. Such a situation is being
improved with use of other functions.

The second function utilised for improving the solution contained in a chromosome is a
function which eliminates unnecessary inventory. If the inventory volume I jT of product j in
the last planning period T is greater then 0, it means that production of product j planned for
the planning horizon exceeds demand for the production volume which is an equal inventory
for the last period I jT. In order to eliminate the surplus of manufactured products we reduce
production xjt for a particular product j beginning with the last period T and we direct towards
the period number 1. The way we perform it guarantees that the condition (2) is not broken,
which means that demand dj for product j has to be satisfied.

The third function performs in the opposite way to the ones just presented. It
replenishes production of product j in particular periods with missing products in order to
eliminate negative inventory. The function performs similarly to the method utilised by the
second function for satisfying the condition (2) of the model for CLSP, which means that
demand dj for product j has to be satisfied.

FUNCTIONS UTILISED FOR IMPROVING A CHROMOSOME WITH REGARD TO
THE OBJECTIVE FUNCTION

Thanks to these functions it is possible to receive in a considerably short time results

that are similar to the basis solution computed with a genetic algorithm, but the value of the
objective function is better.

The first function utilised for improving the solution of the problem was a function
consolidating production parties. As an illustration let us analyse a situation: in the period t
we manufacture 10 pieces of product j and in the period t+1 – 30 pieces. In utilised model we
bear the expenses of two changeovers. If in the period t we have free manufacturing capacities
Ct so when we transfer from the period t + 1 planned production of 30 pieces of product j, we
are able to avoid bearing the expenses of one changeover. In a situation when we decided to
transfer production from the period t to the period t + 1, the solution might have become
significantly worse. Therefore such operations are not taken into consideration since there is a

Logistyka - nauka

Logistyka 2/2012
563

possibility that unsatisfied demand appears in the period t as a result of reduction of
production in this period. When we transmit production to the previous period the only cost
we generate are the inventoriable costs of pieces of product j from the period t till the period t
+ 1. Hence, in a situation when we still have free manufacturing powers and inventoriable
costs for product j we will bear are lower than the changeover cost SCj we consolidate
production parties accordingly to the method presented above.

The first function utilised for improving the solution of the problem is similar to the one
presented right above. In this situation we attempt to eliminate unnecessary inventorial costs
hj connected with the product j. As an illustration lets us analyse a situation which is similar to
the previous example: we produce 10 pieces of the product j in the period t and in the period t
+ 1 – 30 pieces. If at the end of the period t in the 10 pieces of the product j are present in a
warehouse, what means that demand for the product j has been fully satisfied, we should
make sure whether there is a possibility to manufacture these 10 pieces in a subsequent period
so that we will be able to avoid inventoriable costs. If in the period t + 1 the manufacturing
capacity Ct+1 make it possible to manufacture additional 10 pieces of the product j, therefore
we transfer a production party of this product to the period t + 1 and we are able to avoid
inventoriable costs for the product j in the period t + 1.

3. CONCLUDING REMARKS

Results received with a genetic algorithm constructed according to presented principles
were demonstrated in the paper (Książek, 2011) [7].

It is reasonable to utilise a genetic algorithm in solving big lot-sizing and scheduling
problems, since solving then with integer-programming methods is time consummating
(computations were performed with the solver GLPK [GNU Linear Programming Kit]).
Computational experiments presented in the paper (Książek, 2011) [7] prove that a properly
adjusted genetic algorithm is able to find effectively better results than the ones obtained with
the integer programming method in the same amount of time – see Figure 1: Experiments’
results presented in the paper (Książek, 2011) [7]).

Figure 1. Experiments’ results presented in the paper (Książek, 2011) [7].

0,00%

-4,20%

-0,64%

0,00%

-5,82%

5,03%

1,45%

5,56%
3,32%

10,09%

5,70%

10,59%

2,58%

10,46%

1,87%

12,13%

19,58%
20,88%

14,98%

10,40%

-10%

-5%

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Im
p

ro
v

e
m

e
n

t
w

it
h

 r
e

fe
re

n
ce

 t
o

G
LP

K
’s

 s
o

lu
ti

o
n

Data set’s number

Logistyka −−−− nauka

Logistyka 2/2012
564

It is possible to receive considerably well results when parameters of the genetic

algorithm are properly selected. It also benefited from two groups of functions that were
utilised in the structure of the algorithm: the functions utilised for improving a chromosome
which does not satisfy expectations and the functions utilised for improving a chromosome
with regard to the objective function. Without the mentioned functions the genetic algorithm
was not able to be successful when compared to integer programming. It should be
emphasised that better results were received just thanks to utilisation of these functions,
especially the functions of the second group, since they organise the set of algorithm’s
searches and direct the algorithm towards searching amongst the best solutions for a given
population.

The genetic algorithm presented in this paper and results received with it, demonstrated
that this method may be useful for CLSP for lot-sizing and scheduling for a production party
of a greater size. A small disadvantage of computing results with the genetic algorithm may
certainly result from a complicated algorithm’s structure and significant influence of its
parameters on the quality of received solutions.

REFERENCES

[1] Dellaert N., Jeunet J., Jonard N., A genetic algorithm to solve the general multi-level lot-

sizing problem with time-varying costs. “International Journal of Production Economics”,
No 68, 2000, p. 241–257.

[2] Gwiazda T. D., Algorytmy genetyczne. Kompendium. Tom I. Operator krzyżowania dla
problemów numerycznych. Wydawnictwo Naukowe PWN, Warszawa 2007.

[3] Gwiazda T. D., Algorytmy genetyczne. Kompendium. Tom II. Operator mutacji dla
problemów numerycznych. Wydawnictwo Naukowe PWN, Warszawa 2007.

[4] Jinxing Xie, Jiefang Dong, Heuristic genetic algorithm for general Capacitated lot-sizing
problems. “Computer & Mathematics with Applications” No 44, 2002, p. 263–276.

[5] Karimi B., Fatemi Ghomi S., Wilson J., The capacitated lot sizing problem: a review of
models and algorithms. “OMEGA – The International Journal of Management Science”
No 31, 2003, p. 365–378.

[6] Kimss A, A genetic algorithm for multi-level, multi-machine lot sizing and scheduling.
“Computers & Operations Research”, No 26, 1999, p. 829–848.

[7] Książek R., Przedstawianie wyników działania algorytmu genetycznego dla zadania
CLSP planowania wielkości i szeregowania partii produkcyjnej. „Automatyka”, No 15,
Issue 2, Wydawnictwo AGH, Kraków 2011.

[8] Michalewicz Z., Algorytmy genetyczne + struktury danych = programy ewolucyjne.
Wydawnictwo Naukowo-Techniczne, Warszawa 1996.

[9] Quadt D., Kuhn H., Capacitated lot-sizing with extentions: a review. “Operations
Research” No 6, 2008, p. 61–83.

Logistyka - nauka

Logistyka 2/2012
565

BUDOWA ALGORYTMU GENETYCZNEGO DLA ZADANIA CLSP
PLANOWANIA WIELKO ŚCI I SZEREGOWANIA PARTII

PRODUKCYJNEJ

Streszczenie
Poniższa praca przedstawia budowę algorytmu genetycznego zastosowanego do rozwiązania
zadania programowania całkowitoliczbowego dla problemu planowania wielkości i szeregowania
partii produkcyjnej. Opisany algorytm genetyczny posłużył do rozwiązania problemu CLSP
planowania wielkości i szeregowania partii produkcyjnej. W pracy przedstawiono i wyjaśniono
sposób kodowania chromosomów, użyte operatory krzyżowania i mutacji oraz wprowadzone
modyfikacje.

Słowa kluczowe: algorytm genetyczny, model CLSP, planowanie wielkości i szeregowanie partii produkcyjnej

