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NUMERICAL SIMULATION  
OF NON-UNIFORM PROCESSES 

 
In logistics as well as in other branches of science, engineering or transport, one 

frequently observes nonhomogeneous spatial or temporal patterns. It is a challenge for 
mathematical modeling and computer simulation to preserve such non-uniform behavior. 
Typically, the type of solutions to model equations depends on certain characteristic 
parameters. It is important to determine critical values of those. 

  
 

 SYMULACJA NUMERYCZNA 
PROCESÓW NIEJEDNORODNYCH 

 
W logistyce, transporcie jak równieŜ innych dziedzinach naukowych, częstokroć 

występują zjawiska niejednorodne w czasie lub w przestrzeni. Poprawne odzwierciedlenie 
takiego zachowania stanowi wezwanie dla modelowania matematycznego i dla symulacji 
komputerowych. Typową okolicznością jest, Ŝe rozwiązania odpowiednich równań 
modelowych zaleŜą od charakterystycznych parametrów. Istotne znacznenie ma obliczenie 
wartości krytycznych takich parametrów. 

 
 

1. INTRODUCTION 
 
Many processes in nature, engineering or economy can be easily described by means of 

differential equations, and often it is not very difficult to find certain special solutions to 
these model equations.  

In particular, if intuition suggests e.g. symmetries or invariances of the studied 
phenomenon, numerical calculations of that type of solutions may be fast and effective. 
However, in many applications, solutions turn out to be non-unique, and in certain ranges 
of parameters non-trivial behavior has to be studied. 

Let us consider some examples. We start with a dynamical system, described by an 
ordinary differential equation. The equations of motion of a rigid wheelset on a straight 
track under a constant driving moment admit a solution with vanishing lateral motion and 
constant speed along the middle line between the rails. However, if a certain critical speed 
is exceeded, the uniform solution becomes unstable and so-called hunting occurs,  
cf. [7, 2, 4].  
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When there is a special extension of the model, we may have a breakdown of constant 
solutions in the space variable as well. Now we deal with partial differential equations. 
Again, the rolling of a railway wheel may serve as an example. Under ideal conditions, the 
wheel should roll at constant speed, and hence abrasive wear should occur all over its 
circumference at the same intensity. That way, the radius would shrink in a uniform way. 
At high speed this trivial solution becomes unstable, and patterns arise, which are called 
polygonalisation.  

Similar phenomena are observed in various models. We studied in previous paper 
amongst others the loss of stability of compressed columns under follower load in [1], the 
breakdown of continuous families of equilibria in population dynamics in [5]. Wave-like 
behavior of solutions is obtained in models of traffic flow, which may be described either in 
a macroscopic way by hyperbolic balance laws (Lightwill-Whitman-Richards model) or in 
a microscopic way using a particle approach and/or cellular automata. Finally, the 
appearance of limit cycles in models with temporal delay has to be mentioned, cf. [6, 3]. 

 
2. COLLECTION OF MODELS 
 

In this section we revisit three of the models mentioned in the Introduction, which may 
be of interest for logistics. First, there is a model describing the dynamics of three co-
existing populations, inhabiting the same area. Relocation of one of the species may  
be a source or sink for the other ones, hence we have a coupling between state components. 
The same is true for the second example, poligonalization of wheels. This phenomenon has 
a major impact on high speed railway transportation and is still not fully understood. 
Finally, in a third example we briefly discuss the effect of retardation on model behavior. 
This is of particular interest, whenever a human factor is involved, e.g. the model 
of a driver in traffic simulation or a customer in market analysis. 
 
2.1 Population dynamics 
 

The evolution equation for the dynamics of three populations co-existing on a common 
territory is: 
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where:  w=(w1,w2,w3) – population density vector,  

K – matrix of diffusive mobility (diagonal), 
M – matrix of advective couplings, 
F – nonlinear interaction term.  
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Fig.1. Orbit of means value in population dynamical model, projection on first two species 
 

For a derivation we refer to [5]. Assuming positive diffusion coefficients, (1) is a 
coupled system of parabolic equations. Other than the well-known diffusion or heat transfer 
equations, due to the coupling, here non-trivial behavior can be observed. In dependence on 
the choice of parameters, in particular on the nonlinear term F(w’,w), non-unique stationary 
solutions may exist, but also oscillations and even chaotic trajectories have been found.  
 

In Fig. 1, a torus-like orbit is shown. Most intriguingly, continuous families of 
stationary states may exist, see [5] and cited there papers. It has to be mentioned that a full 
survey of the parameter ranges is very complex. It is essential to fine-tune numerical 
algorithms to preserve the qualitative behavior of solutions in simulation results.  

Fig. 2 shows a screen shot of a C++ program developed for the interactive scanning of 
the range of three model parameters. By manipulating the controls, interesting regimes are 
roughly localized, later on exact values of stationary configurations or limit cycles can  
be computed by suitable methods for solving nonlinear equations. Notice that the 
discretization of first-order derivatives in the nonlinear term F(w’,w) is a very sensitive 
matter. Proper choices of parameters are selected by computer algebra methods, cf. [5].  
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Fig.2. Screenshot of simulation tool for searching the 3d parameter space 
 

2.2 Wheel surface evolution  
 

The evolution of abrasive wear on the contact surface between rail and wheel is 
governed by two models, which are coupled in a complicated way into a feed-back loop.  

On the one hand, the short-term dynamics of a rolling wheelset or a single rolling wheel 
is formulated in terms of a system of ordinary differential equations. This system expresses 
the balance of momentum, and it is parametrically dependent on the actual wheel geometry. 
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where:  z  – state (position and velocity vectors), 
   t  – time,  
   M  – mass (matrix), 
   K  – stiffness, 
   f  – forces. 

 
On the other hand, the wheel geometry is evolving slowly due to frictional effects in the 

contact zone. The speed of wear depends on the actual creepage, which in turn is 
determined by the dynamical wheel. 
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where:  r – the radius function (defined on [0, 2π]), 

  β – wear coefficient 
  p – frictional power calculated from (3) 

 

 
 

Fig.3. Evolution of wavy patterns on wheel surface 
 

A chosen result of a computer simulation is shown in Fig. 3. Notice that 
poligonalization occurs only at certain ranges of the travelling speed. Careful speed control 
can even prevent pattern evolution or erase existing waves, cf. [4].  

For details of the modeling, the proper choice of numerical methods and for more 
results we have to refer to [2, 4, 7]. 
 
2.3 Delay model 
 

In many applications, system answers register with a certain delay, cf. [8]. Recently,  
a model problem of this type was studied analytically in [6], numerical calculations where 
reported in [3].  

The evolution equation has the form 
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where for example the nonlinear function g may have the form g(u) = sign(u)u2.  

Further, the delay function d, which is assumed constant in more trivial models, is here 
supposed to be positive and to decrease with increasing absolute value of the state variable 
u. This reflects human behavior – the farther the state deviates from normal, the more often 
we check for changes. The onset of instability for this class of models, described by (2), 
happens at a parameter value of a=1.0. For larger values, size and shape as well as the time 
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period of limit cycles changes drastically, Fig. 4, right plot. The choice of the delay 
function d is essential, see Fig. 4, left part. 

 

 
 

Fig.4.  left: Limit cycles in delay model (green – constant delay, blue – variable delay) 
 Right: Onset of instability at a=1.0 and dependence of pattern on parameter 
 
3. CONCLUSIONS 
 

In logistics a wide range of model types is used to describe phenomena and processes. 
Variation of parameters may lead to qualitative changes in the behavior of solutions.  

Best understood are models based on linear equations, in particular on ordinary 
differential equations. In that case a study of the spectrum of the evolution operator, i.e. the 
roots of the characteristic equation, cf. [1], gives accurate results. However, due to 
nonlinearity, advanced models rarely allow a full analytical solution, hence computer 
simulations are necessary.  

The study of non-uniform solutions by computer simulation should always be verified 
by alternative algorithms and/or backed up by analytical considerations in order to 
distinguish between numerical artifacts and patterns of the true solution to the model 
equations, see [2, 4]. While a study of sensitivity to model parameters is typically a major 
goal, robustness with respect to parameters of numerical methods, such as step sizes, orders 
of polynomials, choice of grid types etc., must not be neglected.  
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