Rozpoznawanie wzorców emisji spalin w pomiarach PEMS za pomocą sieci Kohonena (SOM)
Rozwój technik pomiarowych PEMS sprzyja badaniom ekologiczności pojazdów w rzeczywistych warunkach pracy. Interpretacja wyników pomiarów, na przykład emisji zanieczyszczeń, reprezentowanych bardzo licznymi zbiorami różnorodnych danych wymaga przeprowadzenia złożonych analiz numerycznych. Wyrafinowane metody statystyczne są skuteczne, lecz interpretacja wyników wymaga udziału eksperta o bardzo specjalistycznej wiedzy. Stosowanie metod data mining stwarza szerokie perspektywy i zwiększa zdecydowanie możliwości w zakresie analizy i interpretacji wyników eksperymentu. W artykule przeprowadzono badania transformacji wielolicznego zestawu uczącego uzyskanego z pomiarów do mało licznego zestawu neuronów sieci Kohonena. Dla wyuczonej sieci Kohonena przeprowadzono badania dotyczące rozpoznawania zadanych wzorców stanu pojazdu pomierzonych w trakcie eksperymentu drogowego.
- 0
- Kategoria: Pozostałe zagadnienia